Skip to content

NK-JittorCV/nk-remote

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JRS

Introduction

JRS is an object detection benchmark based on Jittor, and mainly focus on aerial image object detection (oriented object detection).

Install

JRS environment requirements:

  • System: Linux(e.g. Ubuntu/CentOS/Arch), macOS, or Windows Subsystem of Linux (WSL)
  • Python version >= 3.7
  • CPU compiler (require at least one of the following)
    • g++ (>=5.4.0)
    • clang (>=8.0)
  • GPU compiler (optional)
    • nvcc (>=10.0 for g++ or >=10.2 for clang)
  • GPU library: cudnn-dev (recommend tar file installation, reference link)

Step 1: Install the requirements

git clone https://github.com/NK-JittorCV/nk-remote JRS
cd JRS
python -m pip install -r requirements.txt

If you have any installation problems for Jittor, please refer to Jittor

Step 2: Install JRS

cd JRS
# suggest this 
python setup.py develop
# or
python setup.py install

If you don't have permission for install,please add --user.

Or use PYTHONPATH: You can add export PYTHONPATH=$PYTHONPATH:{you_own_path}/JRS/python into .bashrc, and run

source .bashrc

Getting Started

Datasets

The following datasets are supported in JRS, please check the corresponding document before use.

DOTA1.0/DOTA1.5/DOTA2.0 Dataset: dota.md.

FAIR Dataset: fair.md

SSDD/SSDD+: ssdd.md

You can also build your own dataset by convert your datas to DOTA format.

Config

JRS defines the used model, dataset and training/testing method by config-file, please check the config.md to learn how it works.

Train

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=train

Test

If you want to test the downloaded trained models, please set resume_path={you_checkpointspath} in the last line of the config file.

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=test

Test on images / Visualization

You can test and visualize results on your own image sets by:

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=vis_test

You can choose the visualization style you prefer, for more details about visualization, please refer to visualization.md. Visualization

Build a New Project

In this section, we will introduce how to build a new project(model) with JRS. We need to install JRS first, and build a new project by:

mkdir $PROJECT_PATH$
cd $PROJECT_PATH$
cp $JRS_PATH$/tools/run_net.py ./
mkdir configs

Then we can build and edit configs/base.py like $JRS_PATH$/configs/retinanet.py. If we need to use a new layer, we can define this layer at $PROJECT_PATH$/layers.py and import layers.py in $PROJECT_PATH$/run_net.py, then we can use this layer in config files. Then we can train/test this model by:

python run_net.py --config-file=configs/base.py --task=train
python run_net.py --config-file=configs/base.py --task=test

Models

Models Dataset Sub_Image_Size/Overlap Train Aug Test Aug Optim Lr schd mAP Paper Config Download
OrientedRCNN-LSKNet-T-FPN DOTA1.0 1024/200 flip+ra90+bc+ms ms AdamW 1x 81.37 IJCV config model
OrientedRCNN-LSKNet-S-FPN DOTA1.0 1024/200 flip+ra90+bc+ms ms AdamW 1x 81.64 IJCV config model
OrientedRCNN-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 75.62 ICCV21 config model
S2ANet-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 74.11 arxiv config model
S2ANet-R50-FPN DOTA1.0 1024/200 flip+ra90+bc - SGD 1x 76.40 arxiv config model
S2ANet-R50-FPN DOTA1.0 1024/200 flip+ra90+bc+ms ms SGD 1x 79.72 arxiv config model
S2ANet-R101-FPN DOTA1.0 1024/200 Flip - SGD 1x 74.28 arxiv config model
Gliding-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 72.93 arxiv config model
Gliding-R50-FPN DOTA1.0 1024/200 Flip+ra90+bc - SGD 1x 74.93 arxiv config model
H2RBox-R50-FPN DOTA1.0 1024/200 flip - AdamW 1x 67.62 arxiv config model
RetinaNet-hbb-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 68.02 arxiv config model
RetinaNet-obb-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 68.07 arxiv config model
GWD-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 68.88 arxiv config model
KLD-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 69.10 arxiv config model
KFIoU-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 69.36 arxiv config model
FasterRCNN-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 69.631 arxiv config model
RoITransformer-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 73.842 arxiv config model
FCOS-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 70.40 ICCV19 config model
ReDet-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 76.23 arxiv config model pretrained
CSL-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 67.99 arxiv config model
RSDet-R50-FPN DOTA1.0 1024/200 Flip - SGD 1x 68.41 arxiv config model
ATSS-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 72.44 arxiv config model
Reppoints-R50-FPN DOTA1.0 1024/200 flip - SGD 1x 56.34 arxiv config model

Notice:

  1. ms: multiscale
  2. flip: random flip
  3. ra: rotate aug
  4. ra90: rotate aug with angle 90,180,270
  5. 1x : 12 epochs
  6. bc: balance category
  7. mAP: mean Average Precision on DOTA1.0 test set

Plan of Models

✔️Supported 🕒Doing ➕TODO

  • ✔️ S2ANet
  • ✔️ Gliding
  • ✔️ RetinaNet
  • ✔️ Rotated RetinaNet
  • ✔️ Faster R-CNN
  • ✔️ SSD
  • ✔️ ROI Transformer
  • ✔️ FCOS
  • ✔️ Oriented R-CNN
  • ✔️ YOLOv5
  • ✔️ GWD
  • ✔️ KLD
  • ✔️ H2RBox
  • ✔️ KFIoU
  • ✔️ Localization Distillation
  • ✔️ ReDet
  • ✔️ CSL
  • ✔️ Reppoints
  • ✔️ RSDet
  • ✔️ ATSS
  • ✔️ LSKNet
  • ✔️ Strip R-CNN

Plan of Datasets

✔️Supported 🕒Doing ➕TODO

  • ✔️ DOTA1.0
  • ✔️ DOTA1.5
  • ✔️ DOTA2.0
  • ✔️ SSDD
  • ✔️ SSDD+
  • ✔️ FAIR
  • ✔️ COCO

The Team

JRS is currently maintained by the NKU Media Computing Lab. If you are also interested in JRS and want to improve it, Please join us!

Citation

@article{Li_2024_IJCV,
  title={LSKNet: A Foundation Lightweight Backbone for Remote Sensing},
  author={Li, Yuxuan and Li, Xiang and Dai, Yimain and Hou, Qibin and Liu, Li and Liu, Yongxiang and Cheng, Ming-Ming and Yang, Jian},
  journal={International Journal of Computer Vision},
  year={2024},
  doi = {https://doi.org/10.1007/s11263-024-02247-9},
  publisher={Springer}
}

@article{yuan2025strip,
  title={Strip R-CNN: Large Strip Convolution for Remote Sensing Object Detection},
  author={Yuan, Xinbin and Zheng, ZhaoHui and Li, Yuxuan and Liu, Xialei and Liu, Li and Li, Xiang and Hou, Qibin and Cheng, Ming-Ming},
  journal={arXiv preprint arXiv:2501.03775},
  year={2025}
}

@article{hu2020jittor,
  title={Jittor: a novel deep learning framework with meta-operators and unified graph execution},
  author={Hu, Shi-Min and Liang, Dun and Yang, Guo-Ye and Yang, Guo-Wei and Zhou, Wen-Yang},
  journal={Science China Information Sciences},
  volume={63},
  number={222103},
  pages={1--21},
  year={2020}
}

Reference

  1. Jittor
  2. mmrotate
  3. Detectron2
  4. mmdetection
  5. maskrcnn_benchmark
  6. RotationDetection
  7. s2anet
  8. gliding_vertex
  9. oriented_rcnn
  10. r3det
  11. AerialDetection
  12. DOTA_devkit
  13. OBBDetection
  14. LSKNet
  15. Strip R-CNN

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •