JittorYOLO is an object detection benchmark based on Jittor.
JittorYOLO environment requirements:
- System: Linux(e.g. Ubuntu/CentOS/Arch), macOS, or Windows Subsystem of Linux (WSL)
- Python version >= 3.7
- CPU compiler (require at least one of the following)
- g++ (>=5.4.0)
- clang (>=8.0)
- GPU compiler (optional)
- nvcc (>=10.0 for g++ or >=10.2 for clang)
- GPU library: cudnn-dev (recommend tar file installation, reference link)
Step 1: Install the requirements
git clone https://github.com/NK-JittorCV/nk-yolo.git
cd nk-yolo
python -m pip install -r requirements.txt
If you have any installation problems for Jittor, please refer to Jittor
Step 2: Install JittorYOLO
cd nk-yolo
pip install -v -e .
If you don't have permission for install,please add --user
.
Or use PYTHONPATH
:
You can add export PYTHONPATH=$PYTHONPATH:{you_own_path}/JRS/python
into .bashrc
, and run
source .bashrc
python demo.py
Model | Test Size | #Params | FLOPs | APval | Latency |
---|---|---|---|---|---|
YOLOv10-N | 640 | 2.3M | 6.7G | 38.5% | 1.84ms |
YOLOv10-S | 640 | 7.2M | 21.6G | 46.3% | 2.49ms |
YOLOv10-M | 640 | 15.4M | 59.1G | 51.1% | 4.74ms |
YOLOv10-B | 640 | 19.1M | 92.0G | 52.5% | 5.74ms |
YOLOv10-L | 640 | 24.4M | 120.3G | 53.2% | 7.28ms |
YOLOv10-X | 640 | 29.5M | 160.4G | 54.4% | 10.70ms |
@article{hu2020jittor,
title={Jittor: a novel deep learning framework with meta-operators and unified graph execution},
author={Hu, Shi-Min and Liang, Dun and Yang, Guo-Ye and Yang, Guo-Wei and Zhou, Wen-Yang},
journal={Science China Information Sciences},
volume={63},
number={222103},
pages={1--21},
year={2020}
}
@article{wang2024yolov10,
title={YOLOv10: Real-Time End-to-End Object Detection},
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2405.14458},
year={2024}
}