Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 57 additions & 0 deletions src/blop/ax/generation_strategy/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
from ax.generation_strategy.generation_node import GenerationNode
from ax.generation_strategy.generation_strategy import GenerationStrategy
from ax.generation_strategy.model_spec import GeneratorSpec
from ax.generation_strategy.transition_criterion import MinTrials
from ax.modelbridge.registry import Generators
from ax.models.torch.botorch_modular.surrogate import ModelConfig, SurrogateSpec
from botorch.acquisition.logei import qLogNoisyExpectedImprovement
from botorch.models.transforms.outcome import Log

from blop.bayesian.models import LatentGP

default_generation_strategy = GenerationStrategy(
name="Custom Generation Strategy",
nodes=[
GenerationNode(
node_name="Sobol",
model_specs=[
GeneratorSpec(model_enum=Generators.SOBOL, model_kwargs={"seed": 0}),
],
transition_criteria=[
MinTrials(
threshold=16,
transition_to="LatentGP",
use_all_trials_in_exp=True,
),
],
),
GenerationNode(
node_name="LatentGP",
model_specs=[
GeneratorSpec(
model_enum=Generators.BOTORCH_MODULAR,
model_kwargs={
"surrogate_spec": SurrogateSpec(
model_configs=[
ModelConfig(
botorch_model_class=LatentGP,
input_transform_classes=None,
model_options={},
outcome_transform_classes=[Log],
),
],
),
"botorch_acqf_class": qLogNoisyExpectedImprovement,
"acquisition_options": {},
},
model_gen_kwargs={
"optimizer_kwargs": {
"num_restarts": 10,
"sequential": True,
},
},
),
],
),
],
)
4 changes: 2 additions & 2 deletions src/blop/bayesian/kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,10 +50,10 @@ def __init__(
i = dim * torch.ones(j.shape).long()
skew_group_submatrix_indices.append(torch.cat((i, j, k), dim=0))

self.diag_matrix_indices: list[torch.Tensor] = [
self.diag_matrix_indices: list[torch.Tensor] = (
torch.kron(torch.arange(self.num_outputs), torch.ones(self.num_inputs)).long(),
*2 * [torch.arange(self.num_inputs).repeat(self.num_outputs)],
]
)

self.skew_matrix_indices: tuple[torch.Tensor, ...] = (
tuple(torch.cat(skew_group_submatrix_indices, dim=1))
Expand Down
10 changes: 10 additions & 0 deletions src/blop/bayesian/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,11 @@
import torch # type: ignore[import-untyped]
from botorch.models.gp_regression import SingleTaskGP # type: ignore[import-untyped]
from botorch.models.multitask import MultiTaskGP # type: ignore[import-untyped]
from botorch.models.transforms.input import InputTransform
from botorch.models.transforms.outcome import OutcomeTransform
from botorch.utils.types import DEFAULT, _DefaultType
from gpytorch.likelihoods.likelihood import Likelihood
from torch import Tensor

from . import kernels

Expand Down Expand Up @@ -137,6 +142,11 @@ def __init__(
self,
train_X: torch.Tensor,
train_Y: torch.Tensor,
train_Tvar: torch.Tensor = None,
train_Yvar: Tensor | None = None,
likelihood: Likelihood | None = None,
outcome_transform: OutcomeTransform | _DefaultType | None = DEFAULT,
input_transform: InputTransform | None = None,
skew_dims: bool | list[tuple[int, ...]] = True,
*args: Any,
**kwargs: Any,
Expand Down
55 changes: 55 additions & 0 deletions src/blop/tests/integration/ax/test_ax_generation_strageties.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
from blop.ax.agent import Agent
from blop.ax.dof import RangeDOF
from blop.ax.generation_strategy import default_generation_strategy
from blop.ax.objective import Objective
from blop.sim.beamline import TiledBeamline


def test_ax_agent_sim_beamline(RE, setup):
beamline = TiledBeamline(name="bl")
beamline.det.noise.put(False)

dofs = [
RangeDOF(actuator=beamline.kbv_dsv, bounds=(-5.0, 5.0), parameter_type="float"),
RangeDOF(actuator=beamline.kbv_usv, bounds=(-5.0, 5.0), parameter_type="float"),
RangeDOF(actuator=beamline.kbh_dsh, bounds=(-5.0, 5.0), parameter_type="float"),
RangeDOF(actuator=beamline.kbh_ush, bounds=(-5.0, 5.0), parameter_type="float"),
]

objectives = [
Objective(name="bl_det_sum", minimize=False),
Objective(name="bl_det_wid_x", minimize=True),
Objective(name="bl_det_wid_y", minimize=True),
]

def evaluation_function(uid: str, suggestions: list[dict]) -> list[dict]:
run = setup[uid]

bl_det_sums = run["primary/bl_det_sum"].read()
bl_det_wid_x = run["primary/bl_det_wid_x"].read()
bl_det_wid_y = run["primary/bl_det_wid_y"].read()

trial_ids = [suggestion["_id"] for suggestion in run.metadata["start"]["blop_suggestions"]]
outcomes = []
for suggestion in suggestions:
idx = trial_ids.index(suggestion["_id"])
outcome = {
"_id": suggestion["_id"],
"bl_det_sum": bl_det_sums[idx],
"bl_det_wid_x": bl_det_wid_x[idx],
"bl_det_wid_y": bl_det_wid_y[idx],
}
outcomes.append(outcome)

return outcomes

agent = Agent(
sensors=[beamline.det],
dofs=dofs,
objectives=objectives,
evaluation=evaluation_function,
)

agent.ax_client.set_generation_strategy(default_generation_strategy)

RE(agent.optimize(iterations=12, n_points=1))
Loading