Skip to content

NUS-VIP/predicting-human-gaze-beyond-pixels

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Predicting Human Gaze Beyond Pixels

Matlab tools for "Predicting human gaze beyond pixels," Journal of Vision, 2014
Juan Xu, Ming Jiang, Shuo Wang, Mohan Kankanhalli, Qi Zhao

Copyright (c) 2014 NUS VIP - Visual Information Processing Lab

Distributed under the MIT License. See LICENSE file in the distribution folder.

Contents

Source Code

  • demo.m: demonstrates the usage of this package.
  • src/common/config.m defines the configuration parameters.
  • src/common/normalise.m normalises a saliency map.
  • src/dataset/computeFixationMaps.m generates the human fixation maps.
  • src/dataset/computeMouseFixationMaps.m generates the mouse-tracking maps.
  • src/dataset/showEyeData.m visualises the scanpaths of a given subject.
  • src/metric/computeInterSubjectAUC.m computes the ideal (inter-subject) AUC scores.
  • src/metric/normalizedAUC.m computes the normalized AUC scores.
  • src/model/computeIttiMaps.m computes the pixel-level feature maps (Itti & Koch model).
  • src/model/extractObjectFeatures.m computes the object level feature values.
  • src/model/computeObjectMaps.m computes the object-level feature maps.
  • src/model/computeSemanticMaps.m computes the semantic-level feature maps.
  • src/model/splitData.m splits the data into training and testing sets.
  • src/model/trainModel.m trains the saliency model.
  • src/model/computeSaliencyMaps.m computes the predicted saliency maps.

Data

  • data/stimuli/*.jpg stimuli files
  • data/eye/fixations.mat eye-tracking data (fixation points and durations)
  • data/mouse_amt/*.mat mouse-tracking data (sample points collected with crowdsourcing)
  • data/mouse_lab/*.mat mouse-tracking data (sample points collacted in lab)
  • data/attrs.mat manually labelled object masks and attributes

Dependencies

Getting Started

Open Matlab and run demo.m to compute the fixation maps, the feature maps, to learn and evaluate the saliency model.

Contacts

Send feedback, suggestions and questions to:
Juan Xu at jxu@nus.edu.sg
Ming Jiang at mjiang@nus.edu.sg

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published