Skip to content

Commit 1422a0e

Browse files
authored
remove unused confidence_deviation properties (#357)
1 parent 718a898 commit 1422a0e

File tree

1 file changed

+0
-27
lines changed
  • nannyml/performance_estimation/confidence_based

1 file changed

+0
-27
lines changed

nannyml/performance_estimation/confidence_based/metrics.py

Lines changed: 0 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -113,8 +113,6 @@ def __init__(
113113
self.lower_threshold_value_limit: Optional[float] = lower_threshold_value_limit
114114
self.upper_threshold_value_limit: Optional[float] = upper_threshold_value_limit
115115

116-
self.confidence_deviation: Optional[float] = None
117-
118116
self.uncalibrated_y_pred_proba = f'uncalibrated_{self.y_pred_proba}'
119117

120118
self.confidence_upper_bound: Optional[float] = 1.0
@@ -163,9 +161,6 @@ def fit(self, reference_data: pd.DataFrame):
163161

164162
reference_chunks = self.chunker.split(reference_data)
165163

166-
# Calculate confidence bands
167-
self.confidence_deviation = self._confidence_deviation(reference_chunks)
168-
169164
# Calculate alert thresholds
170165
reference_chunk_results = np.asarray([self._realized_performance(chunk.data) for chunk in reference_chunks])
171166
self.lower_threshold_value, self.upper_threshold_value = calculate_threshold_values(
@@ -196,9 +191,6 @@ def _sampling_error(self, data: pd.DataFrame) -> float:
196191
f"'{self.__class__.__name__}' is a subclass of Metric and it must implement the _sampling_error method"
197192
)
198193

199-
def _confidence_deviation(self, reference_chunks: List[Chunk]):
200-
return np.std([self._estimate(chunk.data) for chunk in reference_chunks])
201-
202194
@abc.abstractmethod
203195
def _realized_performance(self, data: pd.DataFrame) -> float:
204196
raise NotImplementedError(
@@ -2151,9 +2143,6 @@ def fit(self, reference_data: pd.DataFrame): # override the superclass fit meth
21512143

21522144
self.alert_thresholds = self._multiclass_confusion_matrix_alert_thresholds(reference_chunks)
21532145

2154-
# Calculate confidence bands
2155-
self.confidence_deviations = self._multiclass_confusion_matrix_confidence_deviations(reference_chunks)
2156-
21572146
# Delegate to confusion matrix subclass
21582147
self._fit(reference_data) # could probably put _fit functionality here since overide fit method
21592148

@@ -2211,22 +2200,6 @@ def _multi_class_confusion_matrix_realized_performance(self, data: pd.DataFrame)
22112200

22122201
return cm
22132202

2214-
def _multiclass_confusion_matrix_confidence_deviations(
2215-
self,
2216-
reference_chunks: List[Chunk],
2217-
) -> Dict[str, float]:
2218-
confidence_deviations = {}
2219-
2220-
num_classes = len(self.classes)
2221-
2222-
for i in range(num_classes):
2223-
for j in range(num_classes):
2224-
confidence_deviations[f'true_{self.classes[i]}_pred_{self.classes[j]}'] = np.std(
2225-
[self._get_multiclass_confusion_matrix_estimate(chunk.data)[i, j] for chunk in reference_chunks]
2226-
)
2227-
2228-
return confidence_deviations
2229-
22302203
def _get_multiclass_confusion_matrix_estimate(self, chunk_data: pd.DataFrame) -> np.ndarray:
22312204
if isinstance(self.y_pred_proba, str):
22322205
raise ValueError(

0 commit comments

Comments
 (0)