Skip to content

NeuroSyd/MetaplasticEEG

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EEGDetectionWithMetaplasticity

This is the git repo associated with the article Metaplastic-EEG: Continuous training on brain-signals by

Isabelle Aguilar (Electronic mail: iagu0459@sydney.edu.au.), Thomas Bersani--Veroni, Luis Fernando Herbozo Contreras, Armin Nikpour, Damien Querlioz, and Omid Kavehei

School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia.

Project Organization


├── README.md          <- This file
│
├── reports            
│   └── ArticleFigures.ipynb        <- Generated graphics and figures used in the Article
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment on linux.
├── requirements_windows.txt   <- The requirements file for reproducing the analysis environment on windows.
│
├── src                
│   ├── data           
│   │   ├── TUHDEdfToPckl.py <- Script to convert TUH EEG .edf to 12 sec long pckl files.
│   │   └── TUHPcklToNpyMultiprocess.py <- Script to convert TUH EEG pckl files to two x and y npy array used for training
│   │
│   ├── models      
│   │   └──StreamTUH.py <- script to train a BNN on a stream of seizure data   
│   │   └──SyntheticTaskTUH.py <- script to train a BNN on synthetic datasets for seizure detection.

Usage

To download the repository and install its dependencies

On linux :

git clone [!!!]
cd EEGDETECTIONWITHMETAPLASTICITY
python -m venv venv --prompt="MetaplasticEEG"
./venv/Scripts/activate
pip install -r requirements.txt

On windows:

git clone [!!!]
cd EEGDETECTIONTWITHMETAPLASTICITY
python -m venv venv --prompt="MetaplasticEEG"
./venv/Scripts/activate
pip install -r requirements_windows.txt

Then to preprocess TUH's raw data

First execute TUHEdfToPckl.py while changing the data folder in/out in the script. Then do the same with TUHPcklNpyMultiprocess.py.

To run the experiments

Execute the script associated with the experiments you want to run. The hyperparameters can be changed at the top of each file beside the #Hyperparameter comment. Theses script use wandb to track the logs of the training.

Project based on the cookiecutter data science project template. #cookiecutterdatascience

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.0%
  • Python 2.0%