This is the git repo associated with the article Metaplastic-EEG: Continuous training on brain-signals by
Isabelle Aguilar (Electronic mail: iagu0459@sydney.edu.au.), Thomas Bersani--Veroni, Luis Fernando Herbozo Contreras, Armin Nikpour, Damien Querlioz, and Omid Kavehei
School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia.
├── README.md <- This file
│
├── reports
│ └── ArticleFigures.ipynb <- Generated graphics and figures used in the Article
│
├── requirements.txt <- The requirements file for reproducing the analysis environment on linux.
├── requirements_windows.txt <- The requirements file for reproducing the analysis environment on windows.
│
├── src
│ ├── data
│ │ ├── TUHDEdfToPckl.py <- Script to convert TUH EEG .edf to 12 sec long pckl files.
│ │ └── TUHPcklToNpyMultiprocess.py <- Script to convert TUH EEG pckl files to two x and y npy array used for training
│ │
│ ├── models
│ │ └──StreamTUH.py <- script to train a BNN on a stream of seizure data
│ │ └──SyntheticTaskTUH.py <- script to train a BNN on synthetic datasets for seizure detection.
On linux :
git clone [!!!]
cd EEGDETECTIONWITHMETAPLASTICITY
python -m venv venv --prompt="MetaplasticEEG"
./venv/Scripts/activate
pip install -r requirements.txt
On windows:
git clone [!!!]
cd EEGDETECTIONTWITHMETAPLASTICITY
python -m venv venv --prompt="MetaplasticEEG"
./venv/Scripts/activate
pip install -r requirements_windows.txt
First execute TUHEdfToPckl.py
while changing the data folder in/out in the script. Then do the same with TUHPcklNpyMultiprocess.py
.
Execute the script associated with the experiments you want to run. The hyperparameters can be changed at the top of each file beside the #Hyperparameter
comment. Theses script use wandb to track the logs of the training.
Project based on the cookiecutter data science project template. #cookiecutterdatascience