Welcome to the Visioon Model repository! This repository contains modular code for training and testing computer vision models.
Visioon Model -modular/
│
├── data/
│ ├── train # train data
│ ├── test # test data
│
├── going_modular/
│ ├── __pycache__/
│ ├── data_setup.py # Script for setting up the dataset
│ ├── engine.py # Script containing training and testing engines
│ ├── get_data.py # Script for downloading data
│ ├── model_builder.py # Script for building the model architecture
│ ├── predict.py # Script for making predictions
│ ├── train.py # Script for training the model
│ └── utils.py # Utility functions
│
├── models/ # Directory for storing trained models
│
├── requirements.txt # List of dependencies for the project
└── torchvision_classification_modular.ipynb # Jupyter notebook for classification with torchvision
To set up the environment for running the code, follow these steps:
-
Create and Activate Virtual Environment:
python -m venv venv
venv\Scripts\activate # For Windows
-
Install Dependencies: Install the required dependencies by running:
pip install -r requirements.txt
To train the model, follow these steps:
-
Data Setup: Set up the dataset using the
data_setup.py
script or provide the necessary data in the appropriate format. -
Training Script: Run the training script:
python going_modular/train.py --learning_rate 0.01 --batch_size 32 --num_epochs 5
To make predictions using the trained model, you can use the predict.py
script.
python going_modular/predict.py --img <file-name>.<type>