This project is a Real-Time Air Quality Monitoring System that collects AQI data, processes it using Kafka and PostgreSQL, and visualizes it in Power BI.
- Live AQI Data Collection (Delhi)
- Kafka Streaming for real-time data processing
- PostgreSQL Database for structured storage
- Power BI Dashboard for interactive analysis
-
Data Ingestion:
- A Python script fetches AQI data from an API every 10 seconds.
- Data is sent to a Kafka topic (
air_quality_data).
-
Data Processing & Storage:
- A Kafka consumer retrieves messages.
- The data is stored in PostgreSQL with timestamps.
-
Visualization:
- Power BI pulls data from PostgreSQL for analysis.
- Displays AQI trends, pollutant levels, and historical data.
- Kafka (Streaming Platform)
- PostgreSQL (Database)
- Python (Data Ingestion & Processing)
- Power BI (Visualization)
- Current AQI & Pollutants: Displays live data.
- Time-Series Graph: AQI trends over time.
- Data Table: Historical pollutant levels.
- AQI Color Guide: Categorizes air quality levels.
API β Kafka Producer β Kafka Topic β Kafka Consumer β PostgreSQL β Power BI
This setup ensures real-time data flow and efficient storage for historical analysis.
