Skip to content

AeroSense is an interactive air quality analysis and forecasting project that combines time series modeling with dynamic visualizations. It monitors pollution trends, predicts AQI, and presents insights through an intuitive dashboard.

Notifications You must be signed in to change notification settings

Niru8449/AeroSense

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Real-Time AQI Monitoring Dashboard

This project is a Real-Time Air Quality Monitoring System that collects AQI data, processes it using Kafka and PostgreSQL, and visualizes it in Power BI.

Dashboard Screenshot:

image

πŸ“Œ Features

  • Live AQI Data Collection (Delhi)
  • Kafka Streaming for real-time data processing
  • PostgreSQL Database for structured storage
  • Power BI Dashboard for interactive analysis

πŸ—οΈ System Architecture

  1. Data Ingestion:

    • A Python script fetches AQI data from an API every 10 seconds.
    • Data is sent to a Kafka topic (air_quality_data).
  2. Data Processing & Storage:

    • A Kafka consumer retrieves messages.
    • The data is stored in PostgreSQL with timestamps.
  3. Visualization:

    • Power BI pulls data from PostgreSQL for analysis.
    • Displays AQI trends, pollutant levels, and historical data.

πŸ› οΈ Tech Stack

  • Kafka (Streaming Platform)
  • PostgreSQL (Database)
  • Python (Data Ingestion & Processing)
  • Power BI (Visualization)

πŸ“Š Power BI Dashboard

  • Current AQI & Pollutants: Displays live data.
  • Time-Series Graph: AQI trends over time.
  • Data Table: Historical pollutant levels.
  • AQI Color Guide: Categorizes air quality levels.

πŸ”„ Kafka Data Flow

API β†’ Kafka Producer β†’ Kafka Topic β†’ Kafka Consumer β†’ PostgreSQL β†’ Power BI

This setup ensures real-time data flow and efficient storage for historical analysis.


About

AeroSense is an interactive air quality analysis and forecasting project that combines time series modeling with dynamic visualizations. It monitors pollution trends, predicts AQI, and presents insights through an intuitive dashboard.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages