Skip to content

(HotMobile'24) Salted Inference: Enhancing Privacy while Maintaining Efficiency of Split Inference in Mobile Computing

License

Notifications You must be signed in to change notification settings

Nokia-Bell-Labs/salted-dnns

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🧂 Salted DNNs

[HotMobile'24] Salted Inference: Enhancing Privacy while Maintaining Efficiency of Split Inference in Mobile Computing

• Paper: https://arxiv.org/abs/2310.13384

• Abstract:

Split inference partitions a deep neural network (DNN) to run the early part at the edge and the later part in the cloud. This meets two key requirements for on-device machine learning: input privacy and compute efficiency. Still, an open question in split inference is output privacy, given that the output of a DNN is visible to the cloud. While encrypted computing can protect output privacy, it mandates extensive computation and communication resources. In this paper, we introduce “Salted DNNs”: a novel method that lets clients control the semantic interpretation of DNN output at inference time while maintaining accuracy and efficiency very close to that of a standard DNN. Experimental evaluations conducted on both image and sensor data show that Salted DNNs achieve classification accuracy very close to standard DNNs, particularly when the salted layer is positioned within the early part to meet the requirements of split inference. Our method is general and can be applied to various DNNs. Here, we open-source our code and results, as a benchmark for future studies.

How to Run Experiments

Set up the arguments of your desired experiment in exp_setup.py and then run

> python main.py 

Citation

Please use:

@inproceedings{malekzadeh2024salted,
  title={Salted Inference: Enhancing Privacy while Maintaining Efficiency of Split Inference in Mobile Computing},
  author = {Mohammad Malekzadeh and Fahim Kawsar},
  booktitle={Proceedings of the 25th International Workshop on Mobile Computing Systems and Applications},
  year={2024}
}

About

(HotMobile'24) Salted Inference: Enhancing Privacy while Maintaining Efficiency of Split Inference in Mobile Computing

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages