Skip to content

Developed a deep learning model for image-based detection of plant diseases. All relevant code and data sets are included in the repository. Additionally, the repository may include visualizations or other tools to help users interpret and apply the model's predictions.

Notifications You must be signed in to change notification settings

NouraAlgohary/Plant-Disease-Detection

Repository files navigation

ML--Plant-Disease-Detection

An image classification deep learning model download

To Start..

Requirments

Data Source

Our Data

Data Description

  • Input: Image
  • Output: Class
    • Apple___Apple_scab
    • Apple___Black_rot
    • Apple___Cedar_apple_rust
    • Apple___healthy
    • Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot
    • Corn_(maize)__Common_rust
    • Corn_(maize)___Northern_Leaf_Blight
    • Corn_(maize)___healthy
    • Grape___Black_rot
    • Grape___Esca_(Black_Measles)
    • Grape___Leaf_blight_(Isariopsis_Leaf_Spot)
    • Grape___healthy
    • Potato___Early_blight
    • Potato___Late_blight
    • Potato___healthy
    • Tomato___Bacterial_spot
    • Tomato___Early_blight
    • Tomato___Late_blight
    • Tomato___Leaf_Mold
    • Tomato___Septoria_leaf_spot
    • Tomato___Spider_mites Two-spotted_spider_mite
    • Tomato___Target_Spot
    • Tomato___Tomato_Yellow_Leaf_Curl_Virus
    • Tomato___Tomato_mosaic_virus
    • Tomato___healthy

Target

High Accuracy

Resource/Situational Constraints

  • limited resources
  • Long training time

Process followed

  • Use free GPU supplied by google colab or kaggle.
  • Use a small dataset with 25 classes related to only five types of plants.

ML Code

  1. Splitting Data
    Take only five plants to work with. I've splitted train folder into train and val sets with val ratio 0.2 after shuffeling.
  2. Exploring the Data
  3. Data Preprocessing
    • Rescale
    • Resize
    • Data is already augmented
  4. Pretrained Model Choosing
    • VGG16 (Accuracy = 84%)
    • MobileNet (Accuracy = 99.4%)
  5. Testing

About

Developed a deep learning model for image-based detection of plant diseases. All relevant code and data sets are included in the repository. Additionally, the repository may include visualizations or other tools to help users interpret and apply the model's predictions.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published