-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sd_unet.py
361 lines (298 loc) · 13.2 KB
/
train_sd_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import tensorflow as tf
import tensorflow_addons as tfa
import os
import datetime
import random
import numpy as np
import math
import cv2
import pandas as pd
import pathlib
import albumentations as albu
from sklearn.model_selection import train_test_split
from time import time as timer
# Training parameter
test_size = 0.2
random_seed = 1234
# Hyperparameter
epoch = 50
batch_size = 32
learning_rate = 0.0001
image_size = (128, 128)
# Augmentation
transformations = [albu.HorizontalFlip(p=0.5),
albu.VerticalFlip(p=0.5),
albu.ShiftScaleRotate(p=0.5),
albu.RandomBrightnessContrast(p=0.5),
albu.RandomGamma(p=0.5),
albu.ElasticTransform(p=0.5),
albu.GaussNoise(p=0.5),
albu.HueSaturationValue(p=0.5)
]
aug = albu.Compose(transformations)
# Data Generator
class data_generator(tf.keras.utils.Sequence):
def __init__(self, file_list, batch_size, image_size, \
shuffle=True, augmentation=None):
self.file_list = file_list
self.batch_size = batch_size
self.image_size = image_size
self.shuffle = shuffle
self.aug = augmentation
self.on_epoch_end()
def __len__(self):
return math.ceil(len(self.file_list) / self.batch_size)
def on_epoch_end(self):
self.indexes = np.arange(len(self.file_list))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __getitem__(self, index):
indexes = self.indexes[index*self.batch_size:(index+1)*\
self.batch_size]
batch = [self.file_list[k] for k in indexes]
# Create batch list
batch_x = []
batch_y = []
for filename in batch:
# Load Image
image = cv2.imread(os.path.join("dataset", "images", \
filename + ".jpg"))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Load mask
mask_land = cv2.imread(os.path.join("dataset", \
"masks", "land", filename + ".png"), \
cv2.IMREAD_GRAYSCALE)
mask_sky = cv2.imread(os.path.join("dataset", \
"masks", "sky", filename + ".png"), \
cv2.IMREAD_GRAYSCALE)
mask = np.dstack((mask_land, mask_sky))
# Resize
image = cv2.resize(image, self.image_size)
mask = cv2.resize(mask, self.image_size, \
interpolation = cv2.INTER_NEAREST)
# Augmentation
if self.aug is not None:
augmented = self.aug(image=image, mask=mask)
image = augmented["image"]
mask = augmented["mask"]
# Normalize
image = cv2.normalize(image, None, 0, 1, \
cv2.NORM_MINMAX, cv2.CV_32F)
mask = cv2.normalize(mask, None, 0, 1, \
cv2.NORM_MINMAX, cv2.CV_32F)
# Load to batch
batch_x.append(image)
batch_y.append(mask)
# Convert batch as array
batch_x = np.array(batch_x)
batch_y = np.array(batch_y)
return batch_x, batch_y
# Loss Function
def dice_loss(y_true, y_pred, num_classes=2):
smooth = tf.keras.backend.epsilon()
dice = 0
for index in range(num_classes):
y_true_f = tf.keras.backend.flatten(y_true[:,:,:,index])
y_pred_f = tf.keras.backend.flatten(y_pred[:,:,:,index])
intersection = tf.keras.backend.sum(y_true_f * y_pred_f)
union = tf.keras.backend.sum(y_true_f) + \
tf.keras.backend.sum(y_pred_f)
dice -= (2. * intersection + smooth) / (union + smooth)
return dice/num_classes
# Metric Function
class MaxMeanIoU(tf.keras.metrics.MeanIoU):
def update_state(self, y_true, y_pred, sample_weight=None):
return super().update_state(tf.argmax(y_true, axis=-1), tf.argmax(y_pred, axis=-1), sample_weight)
# Create model
def create_model():
# Input
input_shape = (image_size[0], image_size[1], 3)
inputs = tf.keras.layers.Input(shape=input_shape)
x = inputs
encoder_layers = []
# Block 1 Encoder
x = tf.keras.layers.Conv2D(filters=8, kernel_size=3, padding='same')(x)
encoder_layers.append(x)
x = tf.keras.layers.Activation('relu')(x)
x = tfa.layers.GroupNormalization()(x)
x = tf.keras.layers.MaxPool2D()(x)
# Block 2 Encoder
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(16, kernel_size=1, padding='same')(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(16, kernel_size=1, padding='same')(x)
x = tfa.layers.GroupNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
encoder_layers.append(x)
x = tf.keras.layers.MaxPool2D()(x)
# Block 3 Encoder
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(32, kernel_size=1, padding='same')(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(32, kernel_size=1, padding='same')(x)
x = tfa.layers.GroupNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
encoder_layers.append(x)
x = tf.keras.layers.MaxPool2D()(x)
# Block 4 Encoder
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(64, kernel_size=1, padding='same')(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(64, kernel_size=1, padding='same')(x)
x = tfa.layers.GroupNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Dropout(0.2)(x)
encoder_layers.append(x)
x = tf.keras.layers.MaxPool2D()(x)
# Block 5 Encoder
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(128, kernel_size=1, padding='same')(x)
x = tf.keras.layers.Dropout(0.2)(x)
print(len(encoder_layers))
# Block 1 Decoder
x = tf.keras.layers.UpSampling2D(size=2)(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(128, kernel_size=1, padding='same')(x)
x = tf.keras.layers.Concatenate()([x, encoder_layers[3]])
# Block 2 Decoder
x = tf.keras.layers.UpSampling2D(size=2)(x)
x = tf.keras.layers.Concatenate()([x, encoder_layers[2]])
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(64, kernel_size=1, padding='same')(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(64, kernel_size=1, padding='same')(x)
x = tfa.layers.GroupNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(64, kernel_size=1, padding='same')(x)
# Block 3 Decoder
x = tf.keras.layers.UpSampling2D(size=2)(x)
x = tf.keras.layers.Concatenate()([x, encoder_layers[1]])
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(32, kernel_size=1, padding='same')(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(32, kernel_size=1, padding='same')(x)
x = tfa.layers.GroupNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(32, kernel_size=1, padding='same')(x)
# Block 4 Decoder
x = tf.keras.layers.UpSampling2D(size=2)(x)
x = tf.keras.layers.Concatenate()([x, encoder_layers[0]])
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(16, kernel_size=1, padding='same')(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(16, kernel_size=1, padding='same')(x)
x = tfa.layers.GroupNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(16, kernel_size=1, padding='same')(x)
# Block 5 Decoder
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(8, kernel_size=1, padding='same')(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(8, kernel_size=1, padding='same')(x)
x = tfa.layers.GroupNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(8, kernel_size=1, padding='same')(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(8, kernel_size=1, padding='same')(x)
x = tfa.layers.GroupNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(8, kernel_size=1, padding='same')(x)
x = tf.keras.layers.DepthwiseConv2D(kernel_size=3, padding='same')(x)
x = tf.keras.layers.Conv2D(2, kernel_size=1, padding='same')(x)
outputs = tf.keras.layers.Activation('softmax')(x)
# Create Optimizer
opt = tf.keras.optimizers.Adam(learning_rate=learning_rate)
# Create Loss Function
loss = dice_loss
# Create Model
model = tf.keras.models.Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer = opt, loss = loss, metrics=["accuracy", MaxMeanIoU(num_classes=2)])
return model
# Create Callback
def create_callback():
# Tensorboard Callbacks
logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
# Checkpoint Callbacks
pathlib.Path("checkpoint").mkdir(parents=True, exist_ok=True)
best_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath=os.path.join("checkpoint", "best" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + ".h5"),
monitor='max_mean_io_u', verbose=1, save_best_only=True, mode='max')
# Predict Image Callbacks
file_writer = tf.summary.create_file_writer(os.path.join(logdir, "predict_output"))
def predict_epoch(epoch, logs):
# Load image
filename = np.random.choice(test_list)
image = cv2.imread(os.path.join("dataset", "images", filename + ".jpg"))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, image_size)
image = cv2.normalize(image, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F)
# Predict mask
pred = model.predict(np.expand_dims(image, 0))
# Process mask
mask = pred.squeeze()
mask = np.stack((mask,)*3, axis=-1)
mask[mask >= 0.5] = 1
mask[mask < 0.5] = 0
class_land = np.concatenate([image, mask[:, :, 0], image * mask[:, :, 0]], axis = 1)
class_sky = np.concatenate([image, mask[:, :, 1], image * mask[:, :, 1]], axis = 1)
# Log the image as an image summary.
with file_writer.as_default():
tf.summary.image("class_land", np.reshape(class_land, (1, image_size[0], image_size[1]*3, 3)), step=epoch)
tf.summary.image("class_sky", np.reshape(class_sky, (1, image_size[0], image_size[1]*3, 3)), step=epoch)
# Define per-epoch callback.
predict_callback = tf.keras.callbacks.LambdaCallback(on_epoch_end=predict_epoch)
return [tensorboard_callback, best_checkpoint_callback, predict_callback]
# Training
# Load Data
dataset_path = "dataset/images"
file_list = [os.path.splitext(filename)[0] for filename in os.listdir(dataset_path)]
# Data Split
train_list, test_list = train_test_split(file_list, shuffle=True, \
test_size=test_size, random_state=random_seed)
start = timer()
# Load data
train_generator = data_generator(train_list, \
batch_size=batch_size, image_size=image_size, \
augmentation=aug)
val_generator = data_generator(test_list, \
batch_size=batch_size, image_size=image_size)
# Create model
model = create_model()
# Train model
model.fit(train_generator, epochs=epoch, \
validation_data=val_generator,\
callbacks=create_callback(), max_queue_size=5)
# Evaluate Model
result = model.evaluate(val_generator)
loss = result[0]
accuracy = result[1]
mean_io_u = result[2]
# Get evaluation metric
print("Run Date:", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
print("Elapsed Time:", timer() - start, "Seconds")
print("Training parameter")
print("test_size:", test_size)
print("random_seed:", random_seed)
print()
print("Hyperparameter:")
print("epoch:", epoch)
print("batch_size:", batch_size)
print("learning_rate:", learning_rate)
print()
print("Result:")
print("loss:", loss)
print("accuracy:", accuracy)
print("mean_io_u:", mean_io_u)