-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4c25553
commit 5637ff8
Showing
3 changed files
with
520 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
# Copyright (c) Open-MMLab. All rights reserved. | ||
import os | ||
import os.path as osp | ||
import tempfile | ||
|
||
import numpy as np | ||
import pytest | ||
from numpy.testing import assert_array_almost_equal, assert_array_equal | ||
|
||
import mmcv | ||
|
||
|
||
def test_flowread(): | ||
data_dir = osp.join(osp.dirname(__file__), '../data') | ||
flow_shape = (60, 80, 2) | ||
|
||
# read .flo file | ||
flow = mmcv.flowread(osp.join(data_dir, 'optflow.flo')) | ||
assert flow.shape == flow_shape | ||
|
||
# pseudo read | ||
flow_same = mmcv.flowread(flow) | ||
assert_array_equal(flow, flow_same) | ||
|
||
# read quantized flow concatenated vertically | ||
flow = mmcv.flowread( | ||
osp.join(data_dir, 'optflow_concat0.jpg'), quantize=True, denorm=True) | ||
assert flow.shape == flow_shape | ||
|
||
# read quantized flow concatenated horizontally | ||
flow = mmcv.flowread( | ||
osp.join(data_dir, 'optflow_concat1.jpg'), | ||
quantize=True, | ||
concat_axis=1, | ||
denorm=True) | ||
assert flow.shape == flow_shape | ||
|
||
# test exceptions | ||
notflow_file = osp.join(data_dir, 'color.jpg') | ||
with pytest.raises(TypeError): | ||
mmcv.flowread(1) | ||
with pytest.raises(IOError): | ||
mmcv.flowread(notflow_file) | ||
with pytest.raises(IOError): | ||
mmcv.flowread(notflow_file, quantize=True) | ||
with pytest.raises(ValueError): | ||
mmcv.flowread(np.zeros((100, 100, 1))) | ||
|
||
|
||
def test_flowwrite(): | ||
flow = np.random.rand(100, 100, 2).astype(np.float32) | ||
|
||
# write to a .flo file | ||
_, filename = tempfile.mkstemp() | ||
mmcv.flowwrite(flow, filename) | ||
flow_from_file = mmcv.flowread(filename) | ||
assert_array_equal(flow, flow_from_file) | ||
os.remove(filename) | ||
|
||
# write to two .jpg files | ||
tmp_filename = osp.join(tempfile.gettempdir(), 'mmcv_test_flow.jpg') | ||
for concat_axis in range(2): | ||
mmcv.flowwrite( | ||
flow, tmp_filename, quantize=True, concat_axis=concat_axis) | ||
shape = (200, 100) if concat_axis == 0 else (100, 200) | ||
assert osp.isfile(tmp_filename) | ||
assert mmcv.imread(tmp_filename, flag='unchanged').shape == shape | ||
os.remove(tmp_filename) | ||
|
||
# test exceptions | ||
with pytest.raises(AssertionError): | ||
mmcv.flowwrite(flow, tmp_filename, quantize=True, concat_axis=2) | ||
|
||
|
||
def test_quantize_flow(): | ||
flow = (np.random.rand(10, 8, 2).astype(np.float32) - 0.5) * 15 | ||
max_val = 5.0 | ||
dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=False) | ||
ref = np.zeros_like(flow, dtype=np.uint8) | ||
for i in range(ref.shape[0]): | ||
for j in range(ref.shape[1]): | ||
for k in range(ref.shape[2]): | ||
val = flow[i, j, k] + max_val | ||
val = min(max(val, 0), 2 * max_val) | ||
ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254) | ||
assert_array_equal(dx, ref[..., 0]) | ||
assert_array_equal(dy, ref[..., 1]) | ||
max_val = 0.5 | ||
dx, dy = mmcv.quantize_flow(flow, max_val=max_val, norm=True) | ||
ref = np.zeros_like(flow, dtype=np.uint8) | ||
for i in range(ref.shape[0]): | ||
for j in range(ref.shape[1]): | ||
for k in range(ref.shape[2]): | ||
scale = flow.shape[1] if k == 0 else flow.shape[0] | ||
val = flow[i, j, k] / scale + max_val | ||
val = min(max(val, 0), 2 * max_val) | ||
ref[i, j, k] = min(np.floor(255 * val / (2 * max_val)), 254) | ||
assert_array_equal(dx, ref[..., 0]) | ||
assert_array_equal(dy, ref[..., 1]) | ||
|
||
|
||
def test_dequantize_flow(): | ||
dx = np.random.randint(256, size=(10, 8), dtype=np.uint8) | ||
dy = np.random.randint(256, size=(10, 8), dtype=np.uint8) | ||
max_val = 5.0 | ||
flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=False) | ||
ref = np.zeros_like(flow, dtype=np.float32) | ||
for i in range(ref.shape[0]): | ||
for j in range(ref.shape[1]): | ||
ref[i, j, 0] = float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val | ||
ref[i, j, 1] = float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val | ||
assert_array_almost_equal(flow, ref) | ||
max_val = 0.5 | ||
flow = mmcv.dequantize_flow(dx, dy, max_val=max_val, denorm=True) | ||
h, w = dx.shape | ||
ref = np.zeros_like(flow, dtype=np.float32) | ||
for i in range(ref.shape[0]): | ||
for j in range(ref.shape[1]): | ||
ref[i, j, | ||
0] = (float(dx[i, j] + 0.5) * 2 * max_val / 255 - max_val) * w | ||
ref[i, j, | ||
1] = (float(dy[i, j] + 0.5) * 2 * max_val / 255 - max_val) * h | ||
assert_array_almost_equal(flow, ref) | ||
|
||
|
||
def test_flow2rgb(): | ||
flow = np.array([[[0, 0], [0.5, 0.5], [1, 1], [2, 1], [3, np.inf]]], | ||
dtype=np.float32) | ||
flow_img = mmcv.flow2rgb(flow) | ||
# yapf: disable | ||
assert_array_almost_equal( | ||
flow_img, | ||
np.array([[[1., 1., 1.], | ||
[1., 0.826074731, 0.683772236], | ||
[1., 0.652149462, 0.367544472], | ||
[1., 0.265650552, 5.96046448e-08], | ||
[0., 0., 0.]]], | ||
dtype=np.float32)) | ||
# yapf: enable | ||
|
||
|
||
def test_flow_warp(): | ||
|
||
def np_flow_warp(flow, img): | ||
output = np.zeros_like(img, dtype=img.dtype) | ||
height = flow.shape[0] | ||
width = flow.shape[1] | ||
|
||
grid = np.indices((height, width)).swapaxes(0, 1).swapaxes(1, 2) | ||
dx = grid[:, :, 0] + flow[:, :, 1] | ||
dy = grid[:, :, 1] + flow[:, :, 0] | ||
sx = np.floor(dx).astype(int) | ||
sy = np.floor(dy).astype(int) | ||
valid = (sx >= 0) & (sx < height - 1) & (sy >= 0) & (sy < width - 1) | ||
|
||
output[valid, :] = img[dx[valid].round().astype(int), | ||
dy[valid].round().astype(int), :] | ||
|
||
return output | ||
|
||
dim = 500 | ||
a = np.random.randn(dim, dim, 3) * 10 + 125 | ||
b = np.random.randn(dim, dim, 2) + 2 + 0.2 | ||
|
||
c = mmcv.flow_warp(a, b, interpolate_mode='nearest') | ||
|
||
d = np_flow_warp(b, a) | ||
|
||
simple_a = np.zeros((5, 5, 3)) | ||
simple_a[2, 2, 0] = 1 | ||
simple_b = np.ones((5, 5, 2)) | ||
|
||
simple_res_c = np.zeros((5, 5, 3)) | ||
simple_res_c[1, 1, 0] = 1 | ||
|
||
res_c = mmcv.flow_warp(simple_a, simple_b, interpolate_mode='bilinear') | ||
|
||
assert_array_equal(c, d) | ||
assert_array_equal(res_c, simple_res_c) | ||
|
||
|
||
def test_make_color_wheel(): | ||
default_color_wheel = mmcv.make_color_wheel() | ||
color_wheel = mmcv.make_color_wheel([2, 2, 2, 2, 2, 2]) | ||
# yapf: disable | ||
assert_array_equal(default_color_wheel, np.array( | ||
[[1. , 0. , 0. ], # noqa | ||
[1. , 0.06666667, 0. ], # noqa | ||
[1. , 0.13333334, 0. ], # noqa | ||
[1. , 0.2 , 0. ], # noqa | ||
[1. , 0.26666668, 0. ], # noqa | ||
[1. , 0.33333334, 0. ], # noqa | ||
[1. , 0.4 , 0. ], # noqa | ||
[1. , 0.46666667, 0. ], # noqa | ||
[1. , 0.53333336, 0. ], # noqa | ||
[1. , 0.6 , 0. ], # noqa | ||
[1. , 0.6666667 , 0. ], # noqa | ||
[1. , 0.73333335, 0. ], # noqa | ||
[1. , 0.8 , 0. ], # noqa | ||
[1. , 0.8666667 , 0. ], # noqa | ||
[1. , 0.93333334, 0. ], # noqa | ||
[1. , 1. , 0. ], # noqa | ||
[0.8333333 , 1. , 0. ], # noqa | ||
[0.6666667 , 1. , 0. ], # noqa | ||
[0.5 , 1. , 0. ], # noqa | ||
[0.33333334, 1. , 0. ], # noqa | ||
[0.16666667, 1. , 0. ], # noqa | ||
[0. , 1. , 0. ], # noqa | ||
[0. , 1. , 0.25 ], # noqa | ||
[0. , 1. , 0.5 ], # noqa | ||
[0. , 1. , 0.75 ], # noqa | ||
[0. , 1. , 1. ], # noqa | ||
[0. , 0.90909094, 1. ], # noqa | ||
[0. , 0.8181818 , 1. ], # noqa | ||
[0. , 0.72727275, 1. ], # noqa | ||
[0. , 0.6363636 , 1. ], # noqa | ||
[0. , 0.54545456, 1. ], # noqa | ||
[0. , 0.45454547, 1. ], # noqa | ||
[0. , 0.36363637, 1. ], # noqa | ||
[0. , 0.27272728, 1. ], # noqa | ||
[0. , 0.18181819, 1. ], # noqa | ||
[0. , 0.09090909, 1. ], # noqa | ||
[0. , 0. , 1. ], # noqa | ||
[0.07692308, 0. , 1. ], # noqa | ||
[0.15384616, 0. , 1. ], # noqa | ||
[0.23076923, 0. , 1. ], # noqa | ||
[0.30769232, 0. , 1. ], # noqa | ||
[0.3846154 , 0. , 1. ], # noqa | ||
[0.46153846, 0. , 1. ], # noqa | ||
[0.53846157, 0. , 1. ], # noqa | ||
[0.61538464, 0. , 1. ], # noqa | ||
[0.6923077 , 0. , 1. ], # noqa | ||
[0.7692308 , 0. , 1. ], # noqa | ||
[0.84615386, 0. , 1. ], # noqa | ||
[0.9230769 , 0. , 1. ], # noqa | ||
[1. , 0. , 1. ], # noqa | ||
[1. , 0. , 0.8333333 ], # noqa | ||
[1. , 0. , 0.6666667 ], # noqa | ||
[1. , 0. , 0.5 ], # noqa | ||
[1. , 0. , 0.33333334], # noqa | ||
[1. , 0. , 0.16666667]], dtype=np.float32)) # noqa | ||
|
||
assert_array_equal( | ||
color_wheel, | ||
np.array([[1., 0. , 0. ], # noqa | ||
[1. , 0.5, 0. ], # noqa | ||
[1. , 1. , 0. ], # noqa | ||
[0.5, 1. , 0. ], # noqa | ||
[0. , 1. , 0. ], # noqa | ||
[0. , 1. , 0.5], # noqa | ||
[0. , 1. , 1. ], # noqa | ||
[0. , 0.5, 1. ], # noqa | ||
[0. , 0. , 1. ], # noqa | ||
[0.5, 0. , 1. ], # noqa | ||
[1. , 0. , 1. ], # noqa | ||
[1. , 0. , 0.5]], dtype=np.float32)) # noqa | ||
# yapf: enable |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
# Copyright (c) Open-MMLab. All rights reserved. | ||
import os | ||
import os.path as osp | ||
import tempfile | ||
|
||
import mmcv | ||
|
||
|
||
class TestVideoEditor: | ||
|
||
@classmethod | ||
def setup_class(cls): | ||
cls.video_path = osp.join(osp.dirname(__file__), '../data/test.mp4') | ||
cls.num_frames = 168 | ||
|
||
def test_cut_concat_video(self): | ||
part1_file = osp.join(tempfile.gettempdir(), '.mmcv_test1.mp4') | ||
part2_file = osp.join(tempfile.gettempdir(), '.mmcv_test2.mp4') | ||
mmcv.cut_video(self.video_path, part1_file, end=3, vcodec='h264') | ||
mmcv.cut_video(self.video_path, part2_file, start=3, vcodec='h264') | ||
v1 = mmcv.VideoReader(part1_file) | ||
v2 = mmcv.VideoReader(part2_file) | ||
assert len(v1) == 75 | ||
assert len(v2) == self.num_frames - 75 | ||
|
||
out_file = osp.join(tempfile.gettempdir(), '.mmcv_test.mp4') | ||
mmcv.concat_video([part1_file, part2_file], out_file) | ||
v = mmcv.VideoReader(out_file) | ||
assert len(v) == self.num_frames | ||
os.remove(part1_file) | ||
os.remove(part2_file) | ||
os.remove(out_file) | ||
|
||
def test_resize_video(self): | ||
out_file = osp.join(tempfile.gettempdir(), '.mmcv_test.mp4') | ||
mmcv.resize_video( | ||
self.video_path, out_file, (200, 100), log_level='panic') | ||
v = mmcv.VideoReader(out_file) | ||
assert v.resolution == (200, 100) | ||
os.remove(out_file) | ||
mmcv.resize_video(self.video_path, out_file, ratio=2) | ||
v = mmcv.VideoReader(out_file) | ||
assert v.resolution == (294 * 2, 240 * 2) | ||
os.remove(out_file) | ||
mmcv.resize_video(self.video_path, out_file, (1000, 480), keep_ar=True) | ||
v = mmcv.VideoReader(out_file) | ||
assert v.resolution == (294 * 2, 240 * 2) | ||
os.remove(out_file) | ||
mmcv.resize_video( | ||
self.video_path, out_file, ratio=(2, 1.5), keep_ar=True) | ||
v = mmcv.VideoReader(out_file) | ||
assert v.resolution == (294 * 2, 360) | ||
os.remove(out_file) |
Oops, something went wrong.