Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fpga: d5005 import pci probe errata workaround #2

Open
wants to merge 54 commits into
base: fpga-ofs-dev
Choose a base branch
from

Conversation

trixirt
Copy link
Contributor

@trixirt trixirt commented Jun 19, 2020

From the intel 2.0.4 driver

Signed-off-by: Tom Rix trix@redhat.com

yilunxu1984 and others added 30 commits June 4, 2020 09:49
Each DFL functional block, e.g. AFU (Accelerated Function Unit) and FME
(FPGA Management Engine), could implement more than one function within
its region, but current driver only allows one user application to access
it by exclusive open on device node. So this is not convenient and
flexible for userspace applications, as they have to combine lots of
different functions into one single application.

This patch removes the limitation here to allow multiple opens to each
feature device node for AFU and FME from userspace applications. If user
still needs exclusive access to these device node, O_EXCL flag must be
issued together with open.

Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Moritz Fischer <mdf@kernel.org>
pci_driver.sriov_configure should return negative value on error and
number of enabled VFs on success. But now the driver returns 0 on
success. The sriov configure still works but will cause a warning
message:

  XX VFs requested; only 0 enabled

This patch changes the return value accordingly.

Cc: stable@vger.kernel.org
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Moritz Fischer <mdf@kernel.org>
…upport

This patch adds description for performance reporting support for
Device Feature List (DFL) based FPGA.

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
This patch adds support for performance reporting private feature
for FPGA Management Engine (FME). Now it supports several different
performance counters, including 'basic', 'cache', 'fabric', 'vtd'
and 'vtd_sip'. It allows user to use standard linux tools to access
these performance counters.

e.g. List all events by "perf list"

  perf list | grep fme

  dfl_fme0/cache_read_hit/                     [Kernel PMU event]
  dfl_fme0/cache_read_miss/                    [Kernel PMU event]
  ...

  dfl_fme0/fab_mmio_read/                      [Kernel PMU event]
  dfl_fme0/fab_mmio_write/                     [Kernel PMU event]
  ...

  dfl_fme0/fab_port_mmio_read,portid=?/        [Kernel PMU event]
  dfl_fme0/fab_port_mmio_write,portid=?/       [Kernel PMU event]
  ...

  dfl_fme0/vtd_port_devtlb_1g_fill,portid=?/   [Kernel PMU event]
  dfl_fme0/vtd_port_devtlb_2m_fill,portid=?/   [Kernel PMU event]
  ...

  dfl_fme0/vtd_sip_iotlb_1g_hit/               [Kernel PMU event]
  dfl_fme0/vtd_sip_iotlb_1g_miss/              [Kernel PMU event]
  ...

  dfl_fme0/clock                               [Kernel PMU event]
  ...

e.g. check increased counter value after run one application using
"perf stat" command.

 perf stat -e dfl_fme0/fab_mmio_read/,dfl_fme0/fab_mmio_write/ ./test

 Performance counter stats for './test':

                 1      dfl_fme0/fab_mmio_read/
                 2      dfl_fme0/fab_mmio_write/

       1.009496520 seconds time elapsed

Please note that fabric counters support both fab_* and fab_port_*, but
actually they are sharing one set of performance counters in hardware.
If user wants to monitor overall data events on fab_* then fab_port_*
can't be supported at the same time, see example below:

perf stat -e dfl_fme0/fab_mmio_read/,dfl_fme0/fab_port_mmio_write,portid=0/

 Performance counter stats for 'system wide':

                 0      dfl_fme0/fab_mmio_read/
   <not supported>      dfl_fme0/fab_port_mmio_write,portid=0/

       2.141064085 seconds time elapsed

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
DFL based FPGA devices could support interrupts for different purposes,
but current DFL framework only supports feature device enumeration with
given MMIO resources information via common DFL headers. This patch
introduces one new API dfl_fpga_enum_info_add_irq for low level bus
drivers (e.g. PCIe device driver) to pass its interrupt resources
information to DFL framework for enumeration, and also adds interrupt
enumeration code in framework to parse and assign interrupt resources
for enumerated feature devices and their own sub features.

With this patch, DFL framework enumerates interrupt resources for core
features, including PORT Error Reporting, FME (FPGA Management Engine)
Error Reporting and also AFU User Interrupts.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
----
v2: early validating irq table for each feature in parse_feature_irq().
    Some code improvement and minor fix for Hao's comments.
v3: put parse_feature_irqs() inside create_feature_instance()
    some minor fixes and more comments
v4: no need to include asm/irq.h.
    fail the dfl enumeration when irq parsing error happens.

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Some DFL FPGA PCIe cards (e.g. Intel FPGA Programmable Acceleration
Card) support MSI-X based interrupts. This patch allows PCIe driver
to prepare and pass interrupt resources to DFL via enumeration API.
These interrupt resources could then be assigned to actual features
which use them.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
----
v2: put irq resources init code inside cce_enumerate_feature_dev()
    Some minor changes for Hao's comments.
v3: Some minor fix for Hao's comments for v2.
v4: Some minor fix for Hao's comments for v3.
FPGA user applications may be interested in interrupts generated by
DFL features. For example, users can implement their own FPGA
logics with interrupts enabled in AFU (Accelerated Function Unit,
dynamic region of DFL based FPGA). So user applications need to be
notified to handle these interrupts.

In order to allow userspace applications to monitor interrupts,
driver requires userspace to provide eventfds as interrupt
notification channels. Applications then poll/select on the eventfds
to get notified.

This patch introduces a generic helper functions to do eventfds binding
with given interrupts.

Sub feature drivers are expected to use XXX_GET_IRQ_NUM to query irq
info, and XXX_SET_IRQ to set eventfds for interrupts. This patch also
introduces helper functions for these 2 ioctls.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
----
v2: use unsigned int instead of int for irq array indexes in
    dfl_fpga_set_irq_triggers()
    Improves comments for NULL fds param in dfl_fpga_set_irq_triggers()
v3: Improve comments of dfl_fpga_set_irq_triggers()
    refines code for dfl_fpga_set_irq_triggers, delete local variable j
v4: Introduce 2 helper functions to help handle the XXX_GET_IRQ_NUM &
    XXX_SET_IRQ ioctls for sub feature drivers.
Error reporting interrupt is very useful to notify users that some
errors are detected by the hardware. Once users are notified, they
could query hardware logged error states, no need to continuously
poll on these states.

This patch adds interrupt support for port error reporting sub feature.
It follows the common DFL interrupt notification and handling mechanism,
implements two ioctl commands below for user to query number of irqs
supported, and set/unset interrupt triggers.

 Ioctls:
 * DFL_FPGA_PORT_ERR_GET_IRQ_NUM
   get the number of irqs, which is used to determine whether/how many
   interrupts error reporting feature supports.

 * DFL_FPGA_PORT_ERR_SET_IRQ
   set/unset given eventfds as error interrupt triggers.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
----
v2: use DFL_FPGA_PORT_ERR_GET_IRQ_NUM instead of
    DFL_FPGA_PORT_ERR_GET_INFO
    Delete flag field for DFL_FPGA_PORT_ERR_SET_IRQ param
v3: put_user() instead of copy_to_user()
    improves comments
v4: use common functions to handle irq ioctls
Error reporting interrupt is very useful to notify users that some
errors are detected by the hardware. Once users are notified, they
could query hardware logged error states, no need to continuously
poll on these states.

This patch adds interrupt support for fme global error reporting sub
feature. It follows the common DFL interrupt notification and handling
mechanism. And it implements two ioctls below for user to query
number of irqs supported, and set/unset interrupt triggers.

 Ioctls:
 * DFL_FPGA_FME_ERR_GET_IRQ_NUM
   get the number of irqs, which is used to determine whether/how many
   interrupts fme error reporting feature supports.

 * DFL_FPGA_FME_ERR_SET_IRQ
   set/unset given eventfds as fme error reporting interrupt triggers.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
----
v2: use DFL_FPGA_FME_ERR_GET_IRQ_NUM instead of
    DFL_FPGA_FME_ERR_GET_INFO
    Delete flags field for DFL_FPGA_FME_ERR_SET_IRQ
v3: put_user() instead of copy_to_user()
    improves comments
v4: use common functions to handle irq ioctls
AFU (Accelerated Function Unit) is dynamic region of the DFL based FPGA,
and always defined by users. Some DFL based FPGA cards allow users to
implement their own interrupts in AFU. In order to support this,
hardware implements a new UINT (AFU Interrupt) private feature with
related capability register which describes the number of supported
AFU interrupts as well as the local index of the interrupts for
software enumeration, and from software side, driver follows the common
DFL interrupt notification and handling mechanism, and it implements
two ioctls below for user to query number of irqs supported and set/unset
interrupt triggers.

 Ioctls:
 * DFL_FPGA_PORT_UINT_GET_IRQ_NUM
   get the number of irqs, which is used to determine how many interrupts
   UINT feature supports.

 * DFL_FPGA_PORT_UINT_SET_IRQ
   set/unset eventfds as AFU interrupt triggers.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
----
v2: use DFL_FPGA_PORT_UINT_GET_IRQ_NUM instead of
    DFL_FPGA_PORT_UINT_GET_INFO
    Delete flags field for DFL_FPGA_PORT_UINT_SET_IRQ
v3: put_user() instead of copy_to_user()
    improves comments
v4: use common functions to handle irq ioctls
…rfaces.

This patch adds introductions of interrupt related interfaces for FME
error reporting, port error reporting and AFU user interrupts features.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
----
v2: Update Documents cause change of irq ioctl interfaces.
v3: No change
v4: Update interrupt support part.
In early partial reconfiguration private feature, it only
supports 32bit data width when writing data to hardware for
PR. 512bit data width PR support is an important optimization
for some specific solutions (e.g. XEON with FPGA integrated),
it allows driver to use AVX512 instruction to improve the
performance of partial reconfiguration. e.g. programming one
100MB bitstream image via this 512bit data width PR hardware
only takes ~300ms, but 32bit revision requires ~3s per test
result.

Please note now this optimization is only done on revision 2
of this PR private feature which is only used in integrated
solution that AVX512 is always supported. This revision 2
hardware doesn't support 32bit PR.

Signed-off-by: Ananda Ravuri <ananda.ravuri@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Acked-by: Alan Tull <atull@kernel.org>
Signed-off-by: Moritz Fischer <mdf@kernel.org>
This patch makes preparation for modularization of DFL sub feature
drivers.

Currently, if we need to support a new DFL sub feature, an entry should
be added to fme/port_feature_drvs[] in dfl-fme/port-main.c. And we need
to re-compile the whole DFL modules. That make the DFL drivers hard to be
extended.

Another consideration is that DFL may contain some IP blocks which are
already supported by kernel, most of them are supported by platform
device drivers. We could create platform devices for these IP blocks and
get them supported by these drivers.

An important issue is that platform device drivers usually requests mmio
resources on probe. But now dfl mmio is mapped in dfl bus driver (e.g.
dfl-pci) as a whole region. Then platform device drivers for sub features
can't request their own mmio resources again. This is what the patch
trying to resolve.

This patch changes the DFL enumeration. DFL bus driver will unmap mmio
resources after first step enumeration and pass enumeration info to DFL
framework. Then DFL framework will map the mmio resources again, do 2nd
step enumeration, and also unmap the mmio resources. In this way, sub
feature drivers could then request their own mmio resources as needed.

An exception is that mmio resource of FIU headers are still mapped in dfl
bus driver. The FIU headers have some fundamental functions (sriov set,
port enable/disable) needed for dfl bus devices and other sub features.
They should not be unmapped as long as dfl bus device is alive.

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
----
v2: dfl-pci: move mapped bars out of cci_pci_ioremap_bar.
    dfl: introduced a macro is_hdr_feature
         delete feature->ioaddr = NULL in dfl_fpga_dev_feature_uinit()
         rename ioremap_dfl_region -> dfl_map_iomem
         refactor build_info_commit_dev & build_info_create_dev, make
           binfo->start & ioaddr change out of these functions
         some minor fixes
v3: merged Hao's code improvement patch.
v4: improves comments.
A new bus type "dfl" is introduced for private features which are not
initialized by DFL feature drivers (dfl-fme & dfl-afu drivers). So these
private features could be handled by separate driver modules.

DFL framework will create DFL devices on enumeration. DFL drivers could
be registered on this bus to match these DFL devices. They are matched by
dfl type & feature_id.

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
----
v2: add struct dfl_fpga_cdev for struct dfl_sub_device
    add driver_data for dflsub_device_id
v4: rename dflsub bus to dfl bus
    dfl device naming change, delete .feature_id, dev_name(parent dev) +
    feature_index is enough to make every name unique.
    Add "type" & "feature_id" sysfs attrs for dfl devices.
    Add documentation sys-bus-dfl for dfl device sysfs attrs
In order to support MODULE_DEVICE_TABLE() for dfl device driver, this
patch moves struct dfl_device_id to mod_devicetable.h

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
----
v4: rename dflsub bus to dfl bus
Device Feature List (DFL) is a linked list of feature headers within the
device MMIO space. It is used by FPGA to enumerate multiple sub features
within it. Each feature can be uniquely identified by DFL type and
feature id, which can be read out from feature headers.

A dfl bus helps DFL framework modularize DFL device drivers for different
sub features. The dfl bus matches its devices and drivers by DFL type and
feature id.

This patch add dfl bus support to MODULE_DEVICE_TABLE() by adding info
about struct dfl_device_id in devicetable-offsets.c and add a dfl entry
point in file2alias.c.

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
----
v4: rename dflsub to dfl
Add PCIe Device ID for Intel FPGA PAC N3000.

Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
Add support for 32bit width data register, then it supports 32bit
data width spi slave device and spi transfers.

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
This patch introduced SPI core parameters in platform data, it
allows passing these SPI core parameters via platform data.

Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
This patch introduces platform data for slave information, it allows
spi-altera to add new spi devices once master registration is done.

Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
This patch adds support for regmap. It allows this driver to
be compatible if low layer register access method is changed
in some cases.

Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
This allows other driver to reuse the name string for spi-altera
platform device creation.

Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
The patch moves dfl-bus related APIs to include/linux/fpga/dfl-bus.h

Now the DFL sub feature drivers could be made as independent modules and
put in different folders according to their functionality. In order for
scattered sub feature drivers to include dfl bus APIs, move the dfl bus
APIs to a new header file in the public folder.

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
Reviewed-by: Russ Weight <russell.h.weight@intel.com>
This patch adds support for the nios handshake private feature on Intel
N3000 FPGA Card. This private feature provides a handshake interface to
FPGA NIOS firmware, which receives retimer configuration command from host
and executes via an internal SPI master. When nios finished the
configuration, host takes over the ownership of the SPI master to control
an Intel MAX10 BMC Chip on the SPI bus.

For NIOS firmware handshake part, this driver requests the retimer
configuration for NIOS with parameters from module param, and adds some
sysfs nodes for user to query NIOS state.

For SPI part, this driver adds a spi-altera platform device as well as
the MAX10 BMC spi slave info. A spi-altera driver will be matched to
handle following the SPI work.

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
Reviewed-by: Russ Weight <russell.h.weight@intel.com>
This patch implements the basic functions of the BMC chip for some Intel
FPGA PCIe Acceleration Cards (PAC). The BMC is implemented using the
intel max10 CPLD.

This BMC chip is connected to FPGA by a SPI bus. To provide reliable
register access from FPGA, an Avalon Memory-Mapped (Avmm) transaction
protocol over the SPI bus is used between host and slave.

This driver implements the basic register access with the regmap framework.
The mfd cells array is empty now as a placeholder.

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Russ Weight <russell.h.weight@intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
Reviewed-by: Russ Weight <russell.h.weight@intel.com>
The spi-altera driver was originally written with a 32
bit processor, where sizeof(unsigned long) is 4.  On a
64 bit processor sizeof(unsigned long) is 8.  Change the structure
member to u32 to match the actual size of the control
register.

Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
Reviewed-by: Xu Yilun <yilun.xu@intel.com>
This is to fix lkp cppcheck warnings:

 drivers/fpga/dfl-pci.c:230:6: warning: The scope of the variable 'ret' can be reduced. [variableScope]
    int ret = 0;
        ^

 drivers/fpga/dfl-pci.c:230:10: warning: Variable 'ret' is assigned a value that is never used. [unreadVariable]
    int ret = 0;
            ^

Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
When putting the port in reset, driver must wait for the soft reset
acknowledgment bit instead of the soft reset bit.

Fixes: 47c1b19 (fpga: dfl: afu: add port ops support)
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
This patch adds hwmon functionality for Intel MAX10 BMC chip. The MAX10
BMC chip connects to a set of sensor chips to monitor current, voltage,
thermal and power of different components on board. BMC firmware is
responsible for sensor data sampling and recording in shared registers.
Host driver reads the sensor data from these shared registers and
exposes them to users as hwmon interfaces.

Signed-off-by: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Signed-off-by: Matthew Gerlach <matthew.gerlach@linux.intel.com>
Reviewed-by: Wu Hao <hao.wu@intel.com>
Create two sysfs entries for exposing the MAC address
and count from the MAX10 BMC register space.

Signed-off-by: Russ Weight <russell.h.weight@intel.com>
Signed-off-by: Xu Yilun <yilun.xu@intel.com>
@pcolberg pcolberg force-pushed the fpga-ofs-dev branch 2 times, most recently from ffc3d3f to 3dd4e48 Compare May 31, 2024 23:35
pcolberg pushed a commit that referenced this pull request May 31, 2024
Pull block updates from Jens Axboe:

 - Add a partscan attribute in sysfs, fixing an issue with systemd
   relying on an internal interface that went away.

 - Attempt #2 at making long running discards interruptible. The
   previous attempt went into 6.9, but we ended up mostly reverting it
   as it had issues.

 - Remove old ida_simple API in bcache

 - Support for zoned write plugging, greatly improving the performance
   on zoned devices.

 - Remove the old throttle low interface, which has been experimental
   since 2017 and never made it beyond that and isn't being used.

 - Remove page->index debugging checks in brd, as it hasn't caught
   anything and prepares us for removing in struct page.

 - MD pull request from Song

 - Don't schedule block workers on isolated CPUs

* tag 'for-6.10/block-20240511' of git://git.kernel.dk/linux: (84 commits)
  blk-throttle: delay initialization until configuration
  blk-throttle: remove CONFIG_BLK_DEV_THROTTLING_LOW
  block: fix that util can be greater than 100%
  block: support to account io_ticks precisely
  block: add plug while submitting IO
  bcache: fix variable length array abuse in btree_iter
  bcache: Remove usage of the deprecated ida_simple_xx() API
  md: Revert "md: Fix overflow in is_mddev_idle"
  blk-lib: check for kill signal in ioctl BLKDISCARD
  block: add a bio_await_chain helper
  block: add a blk_alloc_discard_bio helper
  block: add a bio_chain_and_submit helper
  block: move discard checks into the ioctl handler
  block: remove the discard_granularity check in __blkdev_issue_discard
  block/ioctl: prefer different overflow check
  null_blk: Fix the WARNING: modpost: missing MODULE_DESCRIPTION()
  block: fix and simplify blkdevparts= cmdline parsing
  block: refine the EOF check in blkdev_iomap_begin
  block: add a partscan sysfs attribute for disks
  block: add a disk_has_partscan helper
  ...
pcolberg pushed a commit that referenced this pull request May 31, 2024
…rnel/git/netfilter/nf-next

Pablo Neira Ayuso says:

====================
Netfilter updates for net-next

The following patchset contains Netfilter updates for net-next:

Patch #1 skips transaction if object type provides no .update interface.

Patch #2 skips NETDEV_CHANGENAME which is unused.

Patch #3 enables conntrack to handle Multicast Router Advertisements and
	 Multicast Router Solicitations from the Multicast Router Discovery
	 protocol (RFC4286) as untracked opposed to invalid packets.
	 From Linus Luessing.

Patch #4 updates DCCP conntracker to mark invalid as invalid, instead of
	 dropping them, from Jason Xing.

Patch #5 uses NF_DROP instead of -NF_DROP since NF_DROP is 0,
	 also from Jason.

Patch #6 removes reference in netfilter's sysctl documentation on pickup
	 entries which were already removed by Florian Westphal.

Patch #7 removes check for IPS_OFFLOAD flag to disable early drop which
	 allows to evict entries from the conntrack table,
	 also from Florian.

Patches #8 to #16 updates nf_tables pipapo set backend to allocate
	 the datastructure copy on-demand from preparation phase,
	 to better deal with OOM situations where .commit step is too late
	 to fail. Series from Florian Westphal.

Patch #17 adds a selftest with packetdrill to cover conntrack TCP state
	 transitions, also from Florian.

Patch #18 use GFP_KERNEL to clone elements from control plane to avoid
	 quick atomic reserves exhaustion with large sets, reporter refers
	 to million entries magnitude.

* tag 'nf-next-24-05-12' of git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf-next:
  netfilter: nf_tables: allow clone callbacks to sleep
  selftests: netfilter: add packetdrill based conntrack tests
  netfilter: nft_set_pipapo: remove dirty flag
  netfilter: nft_set_pipapo: move cloning of match info to insert/removal path
  netfilter: nft_set_pipapo: prepare pipapo_get helper for on-demand clone
  netfilter: nft_set_pipapo: merge deactivate helper into caller
  netfilter: nft_set_pipapo: prepare walk function for on-demand clone
  netfilter: nft_set_pipapo: prepare destroy function for on-demand clone
  netfilter: nft_set_pipapo: make pipapo_clone helper return NULL
  netfilter: nft_set_pipapo: move prove_locking helper around
  netfilter: conntrack: remove flowtable early-drop test
  netfilter: conntrack: documentation: remove reference to non-existent sysctl
  netfilter: use NF_DROP instead of -NF_DROP
  netfilter: conntrack: dccp: try not to drop skb in conntrack
  netfilter: conntrack: fix ct-state for ICMPv6 Multicast Router Discovery
  netfilter: nf_tables: remove NETDEV_CHANGENAME from netdev chain event handler
  netfilter: nf_tables: skip transaction if update object is not implemented
====================

Link: https://lore.kernel.org/r/20240512161436.168973-1-pablo@netfilter.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
pcolberg pushed a commit that referenced this pull request May 31, 2024
Xuan Zhuo says:

====================
virtio_net: rx enable premapped mode by default

Actually, for the virtio drivers, we can enable premapped mode whatever
the value of use_dma_api. Because we provide the virtio dma apis.
So the driver can enable premapped mode unconditionally.

This patch set makes the big mode of virtio-net to support premapped mode.
And enable premapped mode for rx by default.

Based on the following points, we do not use page pool to manage these
    pages:

    1. virtio-net uses the DMA APIs wrapped by virtio core. Therefore,
       we can only prevent the page pool from performing DMA operations, and
       let the driver perform DMA operations on the allocated pages.
    2. But when the page pool releases the page, we have no chance to
       execute dma unmap.
    3. A solution to #2 is to execute dma unmap every time before putting
       the page back to the page pool. (This is actually a waste, we don't
       execute unmap so frequently.)
    4. But there is another problem, we still need to use page.dma_addr to
       save the dma address. Using page.dma_addr while using page pool is
       unsafe behavior.
    5. And we need space the chain the pages submitted once to virtio core.

    More:
        https://lore.kernel.org/all/CACGkMEu=Aok9z2imB_c5qVuujSh=vjj1kx12fy9N7hqyi+M5Ow@mail.gmail.com/

Why we do not use the page space to store the dma?

    http://lore.kernel.org/all/CACGkMEuyeJ9mMgYnnB42=hw6umNuo=agn7VBqBqYPd7GN=+39Q@mail.gmail.com
====================

Link: https://lore.kernel.org/r/20240511031404.30903-1-xuanzhuo@linux.alibaba.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
pcolberg pushed a commit that referenced this pull request May 31, 2024
In dctcp_update_alpha(), we use a module parameter dctcp_shift_g
as follows:

  alpha -= min_not_zero(alpha, alpha >> dctcp_shift_g);
  ...
  delivered_ce <<= (10 - dctcp_shift_g);

It seems syzkaller started fuzzing module parameters and triggered
shift-out-of-bounds [0] by setting 100 to dctcp_shift_g:

  memcpy((void*)0x20000080,
         "/sys/module/tcp_dctcp/parameters/dctcp_shift_g\000", 47);
  res = syscall(__NR_openat, /*fd=*/0xffffffffffffff9cul, /*file=*/0x20000080ul,
                /*flags=*/2ul, /*mode=*/0ul);
  memcpy((void*)0x20000000, "100\000", 4);
  syscall(__NR_write, /*fd=*/r[0], /*val=*/0x20000000ul, /*len=*/4ul);

Let's limit the max value of dctcp_shift_g by param_set_uint_minmax().

With this patch:

  # echo 10 > /sys/module/tcp_dctcp/parameters/dctcp_shift_g
  # cat /sys/module/tcp_dctcp/parameters/dctcp_shift_g
  10
  # echo 11 > /sys/module/tcp_dctcp/parameters/dctcp_shift_g
  -bash: echo: write error: Invalid argument

[0]:
UBSAN: shift-out-of-bounds in net/ipv4/tcp_dctcp.c:143:12
shift exponent 100 is too large for 32-bit type 'u32' (aka 'unsigned int')
CPU: 0 PID: 8083 Comm: syz-executor345 Not tainted 6.9.0-05151-g1b294a1f3561 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x201/0x300 lib/dump_stack.c:114
 ubsan_epilogue lib/ubsan.c:231 [inline]
 __ubsan_handle_shift_out_of_bounds+0x346/0x3a0 lib/ubsan.c:468
 dctcp_update_alpha+0x540/0x570 net/ipv4/tcp_dctcp.c:143
 tcp_in_ack_event net/ipv4/tcp_input.c:3802 [inline]
 tcp_ack+0x17b1/0x3bc0 net/ipv4/tcp_input.c:3948
 tcp_rcv_state_process+0x57a/0x2290 net/ipv4/tcp_input.c:6711
 tcp_v4_do_rcv+0x764/0xc40 net/ipv4/tcp_ipv4.c:1937
 sk_backlog_rcv include/net/sock.h:1106 [inline]
 __release_sock+0x20f/0x350 net/core/sock.c:2983
 release_sock+0x61/0x1f0 net/core/sock.c:3549
 mptcp_subflow_shutdown+0x3d0/0x620 net/mptcp/protocol.c:2907
 mptcp_check_send_data_fin+0x225/0x410 net/mptcp/protocol.c:2976
 __mptcp_close+0x238/0xad0 net/mptcp/protocol.c:3072
 mptcp_close+0x2a/0x1a0 net/mptcp/protocol.c:3127
 inet_release+0x190/0x1f0 net/ipv4/af_inet.c:437
 __sock_release net/socket.c:659 [inline]
 sock_close+0xc0/0x240 net/socket.c:1421
 __fput+0x41b/0x890 fs/file_table.c:422
 task_work_run+0x23b/0x300 kernel/task_work.c:180
 exit_task_work include/linux/task_work.h:38 [inline]
 do_exit+0x9c8/0x2540 kernel/exit.c:878
 do_group_exit+0x201/0x2b0 kernel/exit.c:1027
 __do_sys_exit_group kernel/exit.c:1038 [inline]
 __se_sys_exit_group kernel/exit.c:1036 [inline]
 __x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1036
 do_syscall_x64 arch/x86/entry/common.c:52 [inline]
 do_syscall_64+0xe4/0x240 arch/x86/entry/common.c:83
 entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x7f6c2b5005b6
Code: Unable to access opcode bytes at 0x7f6c2b50058c.
RSP: 002b:00007ffe883eb948 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 00007f6c2b5862f0 RCX: 00007f6c2b5005b6
RDX: 0000000000000001 RSI: 000000000000003c RDI: 0000000000000001
RBP: 0000000000000001 R08: 00000000000000e7 R09: ffffffffffffffc0
R10: 0000000000000006 R11: 0000000000000246 R12: 00007f6c2b5862f0
R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001
 </TASK>

Reported-by: syzkaller <syzkaller@googlegroups.com>
Reported-by: Yue Sun <samsun1006219@gmail.com>
Reported-by: xingwei lee <xrivendell7@gmail.com>
Closes: https://lore.kernel.org/netdev/CAEkJfYNJM=cw-8x7_Vmj1J6uYVCWMbbvD=EFmDPVBGpTsqOxEA@mail.gmail.com/
Fixes: e3118e8 ("net: tcp: add DCTCP congestion control algorithm")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Link: https://lore.kernel.org/r/20240517091626.32772-1-kuniyu@amazon.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
pcolberg pushed a commit that referenced this pull request May 31, 2024
Patch series "Introduce mseal", v10.

This patchset proposes a new mseal() syscall for the Linux kernel.

In a nutshell, mseal() protects the VMAs of a given virtual memory range
against modifications, such as changes to their permission bits.

Modern CPUs support memory permissions, such as the read/write (RW) and
no-execute (NX) bits.  Linux has supported NX since the release of kernel
version 2.6.8 in August 2004 [1].  The memory permission feature improves
the security stance on memory corruption bugs, as an attacker cannot
simply write to arbitrary memory and point the code to it.  The memory
must be marked with the X bit, or else an exception will occur. 
Internally, the kernel maintains the memory permissions in a data
structure called VMA (vm_area_struct).  mseal() additionally protects the
VMA itself against modifications of the selected seal type.

Memory sealing is useful to mitigate memory corruption issues where a
corrupted pointer is passed to a memory management system.  For example,
such an attacker primitive can break control-flow integrity guarantees
since read-only memory that is supposed to be trusted can become writable
or .text pages can get remapped.  Memory sealing can automatically be
applied by the runtime loader to seal .text and .rodata pages and
applications can additionally seal security critical data at runtime.  A
similar feature already exists in the XNU kernel with the
VM_FLAGS_PERMANENT [3] flag and on OpenBSD with the mimmutable syscall
[4].  Also, Chrome wants to adopt this feature for their CFI work [2] and
this patchset has been designed to be compatible with the Chrome use case.

Two system calls are involved in sealing the map:  mmap() and mseal().

The new mseal() is an syscall on 64 bit CPU, and with following signature:

int mseal(void addr, size_t len, unsigned long flags)
addr/len: memory range.
flags: reserved.

mseal() blocks following operations for the given memory range.

1> Unmapping, moving to another location, and shrinking the size,
   via munmap() and mremap(), can leave an empty space, therefore can
   be replaced with a VMA with a new set of attributes.

2> Moving or expanding a different VMA into the current location,
   via mremap().

3> Modifying a VMA via mmap(MAP_FIXED).

4> Size expansion, via mremap(), does not appear to pose any specific
   risks to sealed VMAs. It is included anyway because the use case is
   unclear. In any case, users can rely on merging to expand a sealed VMA.

5> mprotect() and pkey_mprotect().

6> Some destructive madvice() behaviors (e.g. MADV_DONTNEED) for anonymous
   memory, when users don't have write permission to the memory. Those
   behaviors can alter region contents by discarding pages, effectively a
   memset(0) for anonymous memory.

The idea that inspired this patch comes from Stephen Röttger’s work in
V8 CFI [5].  Chrome browser in ChromeOS will be the first user of this
API.

Indeed, the Chrome browser has very specific requirements for sealing,
which are distinct from those of most applications.  For example, in the
case of libc, sealing is only applied to read-only (RO) or read-execute
(RX) memory segments (such as .text and .RELRO) to prevent them from
becoming writable, the lifetime of those mappings are tied to the lifetime
of the process.

Chrome wants to seal two large address space reservations that are managed
by different allocators.  The memory is mapped RW- and RWX respectively
but write access to it is restricted using pkeys (or in the future ARM
permission overlay extensions).  The lifetime of those mappings are not
tied to the lifetime of the process, therefore, while the memory is
sealed, the allocators still need to free or discard the unused memory. 
For example, with madvise(DONTNEED).

However, always allowing madvise(DONTNEED) on this range poses a security
risk.  For example if a jump instruction crosses a page boundary and the
second page gets discarded, it will overwrite the target bytes with zeros
and change the control flow.  Checking write-permission before the discard
operation allows us to control when the operation is valid.  In this case,
the madvise will only succeed if the executing thread has PKEY write
permissions and PKRU changes are protected in software by control-flow
integrity.

Although the initial version of this patch series is targeting the Chrome
browser as its first user, it became evident during upstream discussions
that we would also want to ensure that the patch set eventually is a
complete solution for memory sealing and compatible with other use cases. 
The specific scenario currently in mind is glibc's use case of loading and
sealing ELF executables.  To this end, Stephen is working on a change to
glibc to add sealing support to the dynamic linker, which will seal all
non-writable segments at startup.  Once this work is completed, all
applications will be able to automatically benefit from these new
protections.

In closing, I would like to formally acknowledge the valuable
contributions received during the RFC process, which were instrumental in
shaping this patch:

Jann Horn: raising awareness and providing valuable insights on the
  destructive madvise operations.
Liam R. Howlett: perf optimization.
Linus Torvalds: assisting in defining system call signature and scope.
Theo de Raadt: sharing the experiences and insight gained from
  implementing mimmutable() in OpenBSD.

MM perf benchmarks
==================
This patch adds a loop in the mprotect/munmap/madvise(DONTNEED) to
check the VMAs’ sealing flag, so that no partial update can be made,
when any segment within the given memory range is sealed.

To measure the performance impact of this loop, two tests are developed.
[8]

The first is measuring the time taken for a particular system call,
by using clock_gettime(CLOCK_MONOTONIC). The second is using
PERF_COUNT_HW_REF_CPU_CYCLES (exclude user space). Both tests have
similar results.

The tests have roughly below sequence:
for (i = 0; i < 1000, i++)
    create 1000 mappings (1 page per VMA)
    start the sampling
    for (j = 0; j < 1000, j++)
        mprotect one mapping
    stop and save the sample
    delete 1000 mappings
calculates all samples.

Below tests are performed on Intel(R) Pentium(R) Gold 7505 @ 2.00GHz,
4G memory, Chromebook.

Based on the latest upstream code:
The first test (measuring time)
syscall__	vmas	t	t_mseal	delta_ns	per_vma	%
munmap__  	1	909	944	35	35	104%
munmap__  	2	1398	1502	104	52	107%
munmap__  	4	2444	2594	149	37	106%
munmap__  	8	4029	4323	293	37	107%
munmap__  	16	6647	6935	288	18	104%
munmap__  	32	11811	12398	587	18	105%
mprotect	1	439	465	26	26	106%
mprotect	2	1659	1745	86	43	105%
mprotect	4	3747	3889	142	36	104%
mprotect	8	6755	6969	215	27	103%
mprotect	16	13748	14144	396	25	103%
mprotect	32	27827	28969	1142	36	104%
madvise_	1	240	262	22	22	109%
madvise_	2	366	442	76	38	121%
madvise_	4	623	751	128	32	121%
madvise_	8	1110	1324	215	27	119%
madvise_	16	2127	2451	324	20	115%
madvise_	32	4109	4642	534	17	113%

The second test (measuring cpu cycle)
syscall__	vmas	cpu	cmseal	delta_cpu	per_vma	%
munmap__	1	1790	1890	100	100	106%
munmap__	2	2819	3033	214	107	108%
munmap__	4	4959	5271	312	78	106%
munmap__	8	8262	8745	483	60	106%
munmap__	16	13099	14116	1017	64	108%
munmap__	32	23221	24785	1565	49	107%
mprotect	1	906	967	62	62	107%
mprotect	2	3019	3203	184	92	106%
mprotect	4	6149	6569	420	105	107%
mprotect	8	9978	10524	545	68	105%
mprotect	16	20448	21427	979	61	105%
mprotect	32	40972	42935	1963	61	105%
madvise_	1	434	497	63	63	115%
madvise_	2	752	899	147	74	120%
madvise_	4	1313	1513	200	50	115%
madvise_	8	2271	2627	356	44	116%
madvise_	16	4312	4883	571	36	113%
madvise_	32	8376	9319	943	29	111%

Based on the result, for 6.8 kernel, sealing check adds
20-40 nano seconds, or around 50-100 CPU cycles, per VMA.

In addition, I applied the sealing to 5.10 kernel:
The first test (measuring time)
syscall__	vmas	t	tmseal	delta_ns	per_vma	%
munmap__	1	357	390	33	33	109%
munmap__	2	442	463	21	11	105%
munmap__	4	614	634	20	5	103%
munmap__	8	1017	1137	120	15	112%
munmap__	16	1889	2153	263	16	114%
munmap__	32	4109	4088	-21	-1	99%
mprotect	1	235	227	-7	-7	97%
mprotect	2	495	464	-30	-15	94%
mprotect	4	741	764	24	6	103%
mprotect	8	1434	1437	2	0	100%
mprotect	16	2958	2991	33	2	101%
mprotect	32	6431	6608	177	6	103%
madvise_	1	191	208	16	16	109%
madvise_	2	300	324	24	12	108%
madvise_	4	450	473	23	6	105%
madvise_	8	753	806	53	7	107%
madvise_	16	1467	1592	125	8	108%
madvise_	32	2795	3405	610	19	122%
					
The second test (measuring cpu cycle)
syscall__	nbr_vma	cpu	cmseal	delta_cpu	per_vma	%
munmap__	1	684	715	31	31	105%
munmap__	2	861	898	38	19	104%
munmap__	4	1183	1235	51	13	104%
munmap__	8	1999	2045	46	6	102%
munmap__	16	3839	3816	-23	-1	99%
munmap__	32	7672	7887	216	7	103%
mprotect	1	397	443	46	46	112%
mprotect	2	738	788	50	25	107%
mprotect	4	1221	1256	35	9	103%
mprotect	8	2356	2429	72	9	103%
mprotect	16	4961	4935	-26	-2	99%
mprotect	32	9882	10172	291	9	103%
madvise_	1	351	380	29	29	108%
madvise_	2	565	615	49	25	109%
madvise_	4	872	933	61	15	107%
madvise_	8	1508	1640	132	16	109%
madvise_	16	3078	3323	245	15	108%
madvise_	32	5893	6704	811	25	114%

For 5.10 kernel, sealing check adds 0-15 ns in time, or 10-30
CPU cycles, there is even decrease in some cases.

It might be interesting to compare 5.10 and 6.8 kernel
The first test (measuring time)
syscall__	vmas	t_5_10	t_6_8	delta_ns	per_vma	%
munmap__	1	357	909	552	552	254%
munmap__	2	442	1398	956	478	316%
munmap__	4	614	2444	1830	458	398%
munmap__	8	1017	4029	3012	377	396%
munmap__	16	1889	6647	4758	297	352%
munmap__	32	4109	11811	7702	241	287%
mprotect	1	235	439	204	204	187%
mprotect	2	495	1659	1164	582	335%
mprotect	4	741	3747	3006	752	506%
mprotect	8	1434	6755	5320	665	471%
mprotect	16	2958	13748	10790	674	465%
mprotect	32	6431	27827	21397	669	433%
madvise_	1	191	240	49	49	125%
madvise_	2	300	366	67	33	122%
madvise_	4	450	623	173	43	138%
madvise_	8	753	1110	357	45	147%
madvise_	16	1467	2127	660	41	145%
madvise_	32	2795	4109	1314	41	147%

The second test (measuring cpu cycle)
syscall__	vmas	cpu_5_10	c_6_8	delta_cpu	per_vma	%
munmap__	1	684	1790	1106	1106	262%
munmap__	2	861	2819	1958	979	327%
munmap__	4	1183	4959	3776	944	419%
munmap__	8	1999	8262	6263	783	413%
munmap__	16	3839	13099	9260	579	341%
munmap__	32	7672	23221	15549	486	303%
mprotect	1	397	906	509	509	228%
mprotect	2	738	3019	2281	1140	409%
mprotect	4	1221	6149	4929	1232	504%
mprotect	8	2356	9978	7622	953	423%
mprotect	16	4961	20448	15487	968	412%
mprotect	32	9882	40972	31091	972	415%
madvise_	1	351	434	82	82	123%
madvise_	2	565	752	186	93	133%
madvise_	4	872	1313	442	110	151%
madvise_	8	1508	2271	763	95	151%
madvise_	16	3078	4312	1234	77	140%
madvise_	32	5893	8376	2483	78	142%

From 5.10 to 6.8
munmap: added 250-550 ns in time, or 500-1100 in cpu cycle, per vma.
mprotect: added 200-750 ns in time, or 500-1200 in cpu cycle, per vma.
madvise: added 33-50 ns in time, or 70-110 in cpu cycle, per vma.

In comparison to mseal, which adds 20-40 ns or 50-100 CPU cycles, the
increase from 5.10 to 6.8 is significantly larger, approximately ten times
greater for munmap and mprotect.

When I discuss the mm performance with Brian Makin, an engineer who worked
on performance, it was brought to my attention that such performance
benchmarks, which measuring millions of mm syscall in a tight loop, may
not accurately reflect real-world scenarios, such as that of a database
service.  Also this is tested using a single HW and ChromeOS, the data
from another HW or distribution might be different.  It might be best to
take this data with a grain of salt.


This patch (of 5):

Wire up mseal syscall for all architectures.

Link: https://lkml.kernel.org/r/20240415163527.626541-1-jeffxu@chromium.org
Link: https://lkml.kernel.org/r/20240415163527.626541-2-jeffxu@chromium.org
Signed-off-by: Jeff Xu <jeffxu@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Jann Horn <jannh@google.com> [Bug #2]
Cc: Jeff Xu <jeffxu@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jorge Lucangeli Obes <jorgelo@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Pedro Falcato <pedro.falcato@gmail.com>
Cc: Stephen Röttger <sroettger@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Amer Al Shanawany <amer.shanawany@gmail.com>
Cc: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
@pcolberg pcolberg force-pushed the fpga-ofs-dev branch 2 times, most recently from 808decb to e3f3e19 Compare August 20, 2024 22:07
pcolberg pushed a commit that referenced this pull request Aug 20, 2024
When tries to demote 1G hugetlb folios, a lockdep warning is observed:

============================================
WARNING: possible recursive locking detected
6.10.0-rc6-00452-ga4d0275fa660-dirty #79 Not tainted
--------------------------------------------
bash/710 is trying to acquire lock:
ffffffff8f0a7850 (&h->resize_lock){+.+.}-{3:3}, at: demote_store+0x244/0x460

but task is already holding lock:
ffffffff8f0a6f48 (&h->resize_lock){+.+.}-{3:3}, at: demote_store+0xae/0x460

other info that might help us debug this:
 Possible unsafe locking scenario:

       CPU0
       ----
  lock(&h->resize_lock);
  lock(&h->resize_lock);

 *** DEADLOCK ***

 May be due to missing lock nesting notation

4 locks held by bash/710:
 #0: ffff8f118439c3f0 (sb_writers#5){.+.+}-{0:0}, at: ksys_write+0x64/0xe0
 #1: ffff8f11893b9e88 (&of->mutex#2){+.+.}-{3:3}, at: kernfs_fop_write_iter+0xf8/0x1d0
 #2: ffff8f1183dc4428 (kn->active#98){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x100/0x1d0
 #3: ffffffff8f0a6f48 (&h->resize_lock){+.+.}-{3:3}, at: demote_store+0xae/0x460

stack backtrace:
CPU: 3 PID: 710 Comm: bash Not tainted 6.10.0-rc6-00452-ga4d0275fa660-dirty #79
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x68/0xa0
 __lock_acquire+0x10f2/0x1ca0
 lock_acquire+0xbe/0x2d0
 __mutex_lock+0x6d/0x400
 demote_store+0x244/0x460
 kernfs_fop_write_iter+0x12c/0x1d0
 vfs_write+0x380/0x540
 ksys_write+0x64/0xe0
 do_syscall_64+0xb9/0x1d0
 entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fa61db14887
RSP: 002b:00007ffc56c48358 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007fa61db14887
RDX: 0000000000000002 RSI: 000055a030050220 RDI: 0000000000000001
RBP: 000055a030050220 R08: 00007fa61dbd1460 R09: 000000007fffffff
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002
R13: 00007fa61dc1b780 R14: 00007fa61dc17600 R15: 00007fa61dc16a00
 </TASK>

Lockdep considers this an AA deadlock because the different resize_lock
mutexes reside in the same lockdep class, but this is a false positive.
Place them in distinct classes to avoid these warnings.

Link: https://lkml.kernel.org/r/20240712031314.2570452-1-linmiaohe@huawei.com
Fixes: 8531fc6 ("hugetlb: add hugetlb demote page support")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
pcolberg pushed a commit that referenced this pull request Aug 20, 2024
…/git/gregkh/tty

Pull tty / serial updates from Greg KH:
 "Here is a small set of tty and serial driver updates for 6.11-rc1. Not
  much happened this cycle, unlike the previous kernel release which had
  lots of "excitement" in this part of the kernel. Included in here are
  the following changes:

   - dt binding updates for new platforms

   - 8250 driver updates

   - various small serial driver fixes and updates

   - printk/console naming and matching attempt #2 (was reverted for
     6.10-final, should be good to go this time around, acked by the
     relevant maintainers).

  All of these have been in linux-next for a while with no reported
  issues"

* tag 'tty-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (22 commits)
  Documentation: kernel-parameters: Add DEVNAME:0.0 format for serial ports
  serial: core: Add serial_base_match_and_update_preferred_console()
  printk: Add match_devname_and_update_preferred_console()
  serial: sc16is7xx: hardware reset chip if reset-gpios is defined in DT
  dt-bindings: serial: sc16is7xx: add reset-gpios
  dt-bindings: serial: vt8500-uart: convert to json-schema
  serial: 8250_platform: Explicitly show we initialise ISA ports only once
  tty: add missing MODULE_DESCRIPTION() macros
  dt-bindings: serial: mediatek,uart: add MT7988
  serial: sh-sci: Add support for RZ/V2H(P) SoC
  dt-bindings: serial: Add documentation for Renesas RZ/V2H(P) (R9A09G057) SCIF support
  dt-bindings: serial: renesas,scif: Make 'interrupt-names' property as required
  dt-bindings: serial: renesas,scif: Validate 'interrupts' and 'interrupt-names'
  dt-bindings: serial: renesas,scif: Move ref for serial.yaml at the end
  riscv: dts: starfive: jh7110: Add the core reset and jh7110 compatible for uarts
  serial: 8250_dw: Use reset array API to get resets
  dt-bindings: serial: snps-dw-apb-uart: Add one more reset signal for StarFive JH7110 SoC
  serial: 8250: Extract platform driver
  serial: 8250: Extract RSA bits
  serial: imx: stop casting struct uart_port to struct imx_port
  ...
pcolberg pushed a commit that referenced this pull request Aug 20, 2024
When using cachefiles, lockdep may emit something similar to the circular
locking dependency notice below.  The problem appears to stem from the
following:

 (1) Cachefiles manipulates xattrs on the files in its cache when called
     from ->writepages().

 (2) The setxattr() and removexattr() system call handlers get the name
     (and value) from userspace after taking the sb_writers lock, putting
     accesses of the vma->vm_lock and mm->mmap_lock inside of that.

 (3) The afs filesystem uses a per-inode lock to prevent multiple
     revalidation RPCs and in writeback vs truncate to prevent parallel
     operations from deadlocking against the server on one side and local
     page locks on the other.

Fix this by moving the getting of the name and value in {get,remove}xattr()
outside of the sb_writers lock.  This also has the minor benefits that we
don't need to reget these in the event of a retry and we never try to take
the sb_writers lock in the event we can't pull the name and value into the
kernel.

Alternative approaches that might fix this include moving the dispatch of a
write to the cache off to a workqueue or trying to do without the
validation lock in afs.  Note that this might also affect other filesystems
that use netfslib and/or cachefiles.

 ======================================================
 WARNING: possible circular locking dependency detected
 6.10.0-build2+ #956 Not tainted
 ------------------------------------------------------
 fsstress/6050 is trying to acquire lock:
 ffff888138fd82f0 (mapping.invalidate_lock#3){++++}-{3:3}, at: filemap_fault+0x26e/0x8b0

 but task is already holding lock:
 ffff888113f26d18 (&vma->vm_lock->lock){++++}-{3:3}, at: lock_vma_under_rcu+0x165/0x250

 which lock already depends on the new lock.

 the existing dependency chain (in reverse order) is:

 -> #4 (&vma->vm_lock->lock){++++}-{3:3}:
        __lock_acquire+0xaf0/0xd80
        lock_acquire.part.0+0x103/0x280
        down_write+0x3b/0x50
        vma_start_write+0x6b/0xa0
        vma_link+0xcc/0x140
        insert_vm_struct+0xb7/0xf0
        alloc_bprm+0x2c1/0x390
        kernel_execve+0x65/0x1a0
        call_usermodehelper_exec_async+0x14d/0x190
        ret_from_fork+0x24/0x40
        ret_from_fork_asm+0x1a/0x30

 -> #3 (&mm->mmap_lock){++++}-{3:3}:
        __lock_acquire+0xaf0/0xd80
        lock_acquire.part.0+0x103/0x280
        __might_fault+0x7c/0xb0
        strncpy_from_user+0x25/0x160
        removexattr+0x7f/0x100
        __do_sys_fremovexattr+0x7e/0xb0
        do_syscall_64+0x9f/0x100
        entry_SYSCALL_64_after_hwframe+0x76/0x7e

 -> #2 (sb_writers#14){.+.+}-{0:0}:
        __lock_acquire+0xaf0/0xd80
        lock_acquire.part.0+0x103/0x280
        percpu_down_read+0x3c/0x90
        vfs_iocb_iter_write+0xe9/0x1d0
        __cachefiles_write+0x367/0x430
        cachefiles_issue_write+0x299/0x2f0
        netfs_advance_write+0x117/0x140
        netfs_write_folio.isra.0+0x5ca/0x6e0
        netfs_writepages+0x230/0x2f0
        afs_writepages+0x4d/0x70
        do_writepages+0x1e8/0x3e0
        filemap_fdatawrite_wbc+0x84/0xa0
        __filemap_fdatawrite_range+0xa8/0xf0
        file_write_and_wait_range+0x59/0x90
        afs_release+0x10f/0x270
        __fput+0x25f/0x3d0
        __do_sys_close+0x43/0x70
        do_syscall_64+0x9f/0x100
        entry_SYSCALL_64_after_hwframe+0x76/0x7e

 -> #1 (&vnode->validate_lock){++++}-{3:3}:
        __lock_acquire+0xaf0/0xd80
        lock_acquire.part.0+0x103/0x280
        down_read+0x95/0x200
        afs_writepages+0x37/0x70
        do_writepages+0x1e8/0x3e0
        filemap_fdatawrite_wbc+0x84/0xa0
        filemap_invalidate_inode+0x167/0x1e0
        netfs_unbuffered_write_iter+0x1bd/0x2d0
        vfs_write+0x22e/0x320
        ksys_write+0xbc/0x130
        do_syscall_64+0x9f/0x100
        entry_SYSCALL_64_after_hwframe+0x76/0x7e

 -> #0 (mapping.invalidate_lock#3){++++}-{3:3}:
        check_noncircular+0x119/0x160
        check_prev_add+0x195/0x430
        __lock_acquire+0xaf0/0xd80
        lock_acquire.part.0+0x103/0x280
        down_read+0x95/0x200
        filemap_fault+0x26e/0x8b0
        __do_fault+0x57/0xd0
        do_pte_missing+0x23b/0x320
        __handle_mm_fault+0x2d4/0x320
        handle_mm_fault+0x14f/0x260
        do_user_addr_fault+0x2a2/0x500
        exc_page_fault+0x71/0x90
        asm_exc_page_fault+0x22/0x30

 other info that might help us debug this:

 Chain exists of:
   mapping.invalidate_lock#3 --> &mm->mmap_lock --> &vma->vm_lock->lock

  Possible unsafe locking scenario:

        CPU0                    CPU1
        ----                    ----
   rlock(&vma->vm_lock->lock);
                                lock(&mm->mmap_lock);
                                lock(&vma->vm_lock->lock);
   rlock(mapping.invalidate_lock#3);

  *** DEADLOCK ***

 1 lock held by fsstress/6050:
  #0: ffff888113f26d18 (&vma->vm_lock->lock){++++}-{3:3}, at: lock_vma_under_rcu+0x165/0x250

 stack backtrace:
 CPU: 0 PID: 6050 Comm: fsstress Not tainted 6.10.0-build2+ #956
 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
 Call Trace:
  <TASK>
  dump_stack_lvl+0x57/0x80
  check_noncircular+0x119/0x160
  ? queued_spin_lock_slowpath+0x4be/0x510
  ? __pfx_check_noncircular+0x10/0x10
  ? __pfx_queued_spin_lock_slowpath+0x10/0x10
  ? mark_lock+0x47/0x160
  ? init_chain_block+0x9c/0xc0
  ? add_chain_block+0x84/0xf0
  check_prev_add+0x195/0x430
  __lock_acquire+0xaf0/0xd80
  ? __pfx___lock_acquire+0x10/0x10
  ? __lock_release.isra.0+0x13b/0x230
  lock_acquire.part.0+0x103/0x280
  ? filemap_fault+0x26e/0x8b0
  ? __pfx_lock_acquire.part.0+0x10/0x10
  ? rcu_is_watching+0x34/0x60
  ? lock_acquire+0xd7/0x120
  down_read+0x95/0x200
  ? filemap_fault+0x26e/0x8b0
  ? __pfx_down_read+0x10/0x10
  ? __filemap_get_folio+0x25/0x1a0
  filemap_fault+0x26e/0x8b0
  ? __pfx_filemap_fault+0x10/0x10
  ? find_held_lock+0x7c/0x90
  ? __pfx___lock_release.isra.0+0x10/0x10
  ? __pte_offset_map+0x99/0x110
  __do_fault+0x57/0xd0
  do_pte_missing+0x23b/0x320
  __handle_mm_fault+0x2d4/0x320
  ? __pfx___handle_mm_fault+0x10/0x10
  handle_mm_fault+0x14f/0x260
  do_user_addr_fault+0x2a2/0x500
  exc_page_fault+0x71/0x90
  asm_exc_page_fault+0x22/0x30

Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/2136178.1721725194@warthog.procyon.org.uk
cc: Alexander Viro <viro@zeniv.linux.org.uk>
cc: Christian Brauner <brauner@kernel.org>
cc: Jan Kara <jack@suse.cz>
cc: Jeff Layton <jlayton@kernel.org>
cc: Gao Xiang <xiang@kernel.org>
cc: Matthew Wilcox <willy@infradead.org>
cc: netfs@lists.linux.dev
cc: linux-erofs@lists.ozlabs.org
cc: linux-fsdevel@vger.kernel.org
[brauner: fix minor issues]
Signed-off-by: Christian Brauner <brauner@kernel.org>
pcolberg pushed a commit that referenced this pull request Aug 20, 2024
In z_erofs_get_gbuf(), the current task may be migrated to another
CPU between `z_erofs_gbuf_id()` and `spin_lock(&gbuf->lock)`.

Therefore, z_erofs_put_gbuf() will trigger the following issue
which was found by stress test:

<2>[772156.434168] kernel BUG at fs/erofs/zutil.c:58!
..
<4>[772156.435007]
<4>[772156.439237] CPU: 0 PID: 3078 Comm: stress Kdump: loaded Tainted: G            E      6.10.0-rc7+ #2
<4>[772156.439239] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 1.0.0 01/01/2017
<4>[772156.439241] pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
<4>[772156.439243] pc : z_erofs_put_gbuf+0x64/0x70 [erofs]
<4>[772156.439252] lr : z_erofs_lz4_decompress+0x600/0x6a0 [erofs]
..
<6>[772156.445958] stress (3127): drop_caches: 1
<4>[772156.446120] Call trace:
<4>[772156.446121]  z_erofs_put_gbuf+0x64/0x70 [erofs]
<4>[772156.446761]  z_erofs_lz4_decompress+0x600/0x6a0 [erofs]
<4>[772156.446897]  z_erofs_decompress_queue+0x740/0xa10 [erofs]
<4>[772156.447036]  z_erofs_runqueue+0x428/0x8c0 [erofs]
<4>[772156.447160]  z_erofs_readahead+0x224/0x390 [erofs]
..

Fixes: f36f301 ("erofs: rename per-CPU buffers to global buffer pool and make it configurable")
Cc: <stable@vger.kernel.org> # 6.10+
Reviewed-by: Chunhai Guo <guochunhai@vivo.com>
Reviewed-by: Sandeep Dhavale <dhavale@google.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/20240722035110.3456740-1-hsiangkao@linux.alibaba.com
@pcolberg pcolberg force-pushed the fpga-ofs-dev branch 2 times, most recently from 593cf51 to c92bfc5 Compare September 19, 2024 18:05
@pcolberg pcolberg force-pushed the fpga-ofs-dev branch 2 times, most recently from 1d730d5 to 34b5ed5 Compare October 2, 2024 20:21
pcolberg pushed a commit that referenced this pull request Oct 2, 2024
…git/netfilter/nf

Pablo Neira Ayuso says:

====================
Netfilter fixes for net

v2: with kdoc fixes per Paolo Abeni.

The following patchset contains Netfilter fixes for net:

Patch #1 and #2 handle an esoteric scenario: Given two tasks sending UDP
packets to one another, two packets of the same flow in each direction
handled by different CPUs that result in two conntrack objects in NEW
state, where reply packet loses race. Then, patch #3 adds a testcase for
this scenario. Series from Florian Westphal.

1) NAT engine can falsely detect a port collision if it happens to pick
   up a reply packet as NEW rather than ESTABLISHED. Add extra code to
   detect this and suppress port reallocation in this case.

2) To complete the clash resolution in the reply direction, extend conntrack
   logic to detect clashing conntrack in the reply direction to existing entry.

3) Adds a test case.

Then, an assorted list of fixes follow:

4) Add a selftest for tproxy, from Antonio Ojea.

5) Guard ctnetlink_*_size() functions under
   #if defined(CONFIG_NETFILTER_NETLINK_GLUE_CT) || defined(CONFIG_NF_CONNTRACK_EVENTS)
   From Andy Shevchenko.

6) Use -m socket --transparent in iptables tproxy documentation.
   From XIE Zhibang.

7) Call kfree_rcu() when releasing flowtable hooks to address race with
   netlink dump path, from Phil Sutter.

8) Fix compilation warning in nf_reject with CONFIG_BRIDGE_NETFILTER=n.
   From Simon Horman.

9) Guard ctnetlink_label_size() under CONFIG_NF_CONNTRACK_EVENTS which
   is its only user, to address a compilation warning. From Simon Horman.

10) Use rcu-protected list iteration over basechain hooks from netlink
    dump path.

11) Fix memcg for nf_tables, use GFP_KERNEL_ACCOUNT is not complete.

12) Remove old nfqueue conntrack clash resolution. Instead trying to
    use same destination address consistently which requires double DNAT,
    use the existing clash resolution which allows clashing packets
    go through with different destination. Antonio Ojea originally
    reported an issue from the postrouting chain, I proposed a fix:
    https://lore.kernel.org/netfilter-devel/ZuwSwAqKgCB2a51-@calendula/T/
    which he reported it did not work for him.

13) Adds a selftest for patch 12.

14) Fixes ipvs.sh selftest.

netfilter pull request 24-09-26

* tag 'nf-24-09-26' of git://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf:
  selftests: netfilter: Avoid hanging ipvs.sh
  kselftest: add test for nfqueue induced conntrack race
  netfilter: nfnetlink_queue: remove old clash resolution logic
  netfilter: nf_tables: missing objects with no memcg accounting
  netfilter: nf_tables: use rcu chain hook list iterator from netlink dump path
  netfilter: ctnetlink: compile ctnetlink_label_size with CONFIG_NF_CONNTRACK_EVENTS
  netfilter: nf_reject: Fix build warning when CONFIG_BRIDGE_NETFILTER=n
  netfilter: nf_tables: Keep deleted flowtable hooks until after RCU
  docs: tproxy: ignore non-transparent sockets in iptables
  netfilter: ctnetlink: Guard possible unused functions
  selftests: netfilter: nft_tproxy.sh: add tcp tests
  selftests: netfilter: add reverse-clash resolution test case
  netfilter: conntrack: add clash resolution for reverse collisions
  netfilter: nf_nat: don't try nat source port reallocation for reverse dir clash
====================

Link: https://patch.msgid.link/20240926110717.102194-1-pablo@netfilter.org
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
pcolberg pushed a commit that referenced this pull request Oct 21, 2024
On the node of an NFS client, some files saved in the mountpoint of the
NFS server were copied to another location of the same NFS server.
Accidentally, the nfs42_complete_copies() got a NULL-pointer dereference
crash with the following syslog:

[232064.838881] NFSv4: state recovery failed for open file nfs/pvc-12b5200d-cd0f-46a3-b9f0-af8f4fe0ef64.qcow2, error = -116
[232064.839360] NFSv4: state recovery failed for open file nfs/pvc-12b5200d-cd0f-46a3-b9f0-af8f4fe0ef64.qcow2, error = -116
[232066.588183] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000058
[232066.588586] Mem abort info:
[232066.588701]   ESR = 0x0000000096000007
[232066.588862]   EC = 0x25: DABT (current EL), IL = 32 bits
[232066.589084]   SET = 0, FnV = 0
[232066.589216]   EA = 0, S1PTW = 0
[232066.589340]   FSC = 0x07: level 3 translation fault
[232066.589559] Data abort info:
[232066.589683]   ISV = 0, ISS = 0x00000007
[232066.589842]   CM = 0, WnR = 0
[232066.589967] user pgtable: 64k pages, 48-bit VAs, pgdp=00002000956ff400
[232066.590231] [0000000000000058] pgd=08001100ae100003, p4d=08001100ae100003, pud=08001100ae100003, pmd=08001100b3c00003, pte=0000000000000000
[232066.590757] Internal error: Oops: 96000007 [#1] SMP
[232066.590958] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm vhost_net vhost vhost_iotlb tap tun ipt_rpfilter xt_multiport ip_set_hash_ip ip_set_hash_net xfrm_interface xfrm6_tunnel tunnel4 tunnel6 esp4 ah4 wireguard libcurve25519_generic veth xt_addrtype xt_set nf_conntrack_netlink ip_set_hash_ipportnet ip_set_hash_ipportip ip_set_bitmap_port ip_set_hash_ipport dummy ip_set ip_vs_sh ip_vs_wrr ip_vs_rr ip_vs iptable_filter sch_ingress nfnetlink_cttimeout vport_gre ip_gre ip_tunnel gre vport_geneve geneve vport_vxlan vxlan ip6_udp_tunnel udp_tunnel openvswitch nf_conncount dm_round_robin dm_service_time dm_multipath xt_nat xt_MASQUERADE nft_chain_nat nf_nat xt_mark xt_conntrack xt_comment nft_compat nft_counter nf_tables nfnetlink ocfs2 ocfs2_nodemanager ocfs2_stackglue iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi ipmi_ssif nbd overlay 8021q garp mrp bonding tls rfkill sunrpc ext4 mbcache jbd2
[232066.591052]  vfat fat cas_cache cas_disk ses enclosure scsi_transport_sas sg acpi_ipmi ipmi_si ipmi_devintf ipmi_msghandler ip_tables vfio_pci vfio_pci_core vfio_virqfd vfio_iommu_type1 vfio dm_mirror dm_region_hash dm_log dm_mod nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter bridge stp llc fuse xfs libcrc32c ast drm_vram_helper qla2xxx drm_kms_helper syscopyarea crct10dif_ce sysfillrect ghash_ce sysimgblt sha2_ce fb_sys_fops cec sha256_arm64 sha1_ce drm_ttm_helper ttm nvme_fc igb sbsa_gwdt nvme_fabrics drm nvme_core i2c_algo_bit i40e scsi_transport_fc megaraid_sas aes_neon_bs
[232066.596953] CPU: 6 PID: 4124696 Comm: 10.253.166.125- Kdump: loaded Not tainted 5.15.131-9.cl9_ocfs2.aarch64 #1
[232066.597356] Hardware name: Great Wall .\x93\x8e...RF6260 V5/GWMSSE2GL1T, BIOS T656FBE_V3.0.18 2024-01-06
[232066.597721] pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[232066.598034] pc : nfs4_reclaim_open_state+0x220/0x800 [nfsv4]
[232066.598327] lr : nfs4_reclaim_open_state+0x12c/0x800 [nfsv4]
[232066.598595] sp : ffff8000f568fc70
[232066.598731] x29: ffff8000f568fc70 x28: 0000000000001000 x27: ffff21003db33000
[232066.599030] x26: ffff800005521ae0 x25: ffff0100f98fa3f0 x24: 0000000000000001
[232066.599319] x23: ffff800009920008 x22: ffff21003db33040 x21: ffff21003db33050
[232066.599628] x20: ffff410172fe9e40 x19: ffff410172fe9e00 x18: 0000000000000000
[232066.599914] x17: 0000000000000000 x16: 0000000000000004 x15: 0000000000000000
[232066.600195] x14: 0000000000000000 x13: ffff800008e685a8 x12: 00000000eac0c6e6
[232066.600498] x11: 0000000000000000 x10: 0000000000000008 x9 : ffff8000054e5828
[232066.600784] x8 : 00000000ffffffbf x7 : 0000000000000001 x6 : 000000000a9eb14a
[232066.601062] x5 : 0000000000000000 x4 : ffff70ff8a14a800 x3 : 0000000000000058
[232066.601348] x2 : 0000000000000001 x1 : 54dce46366daa6c6 x0 : 0000000000000000
[232066.601636] Call trace:
[232066.601749]  nfs4_reclaim_open_state+0x220/0x800 [nfsv4]
[232066.601998]  nfs4_do_reclaim+0x1b8/0x28c [nfsv4]
[232066.602218]  nfs4_state_manager+0x928/0x10f0 [nfsv4]
[232066.602455]  nfs4_run_state_manager+0x78/0x1b0 [nfsv4]
[232066.602690]  kthread+0x110/0x114
[232066.602830]  ret_from_fork+0x10/0x20
[232066.602985] Code: 1400000d f9403f20 f9402e61 91016003 (f9402c00)
[232066.603284] SMP: stopping secondary CPUs
[232066.606936] Starting crashdump kernel...
[232066.607146] Bye!

Analysing the vmcore, we know that nfs4_copy_state listed by destination
nfs_server->ss_copies was added by the field copies in handle_async_copy(),
and we found a waiting copy process with the stack as:
PID: 3511963  TASK: ffff710028b47e00  CPU: 0   COMMAND: "cp"
 #0 [ffff8001116ef740] __switch_to at ffff8000081b92f4
 #1 [ffff8001116ef760] __schedule at ffff800008dd0650
 #2 [ffff8001116ef7c0] schedule at ffff800008dd0a00
 #3 [ffff8001116ef7e0] schedule_timeout at ffff800008dd6aa0
 #4 [ffff8001116ef860] __wait_for_common at ffff800008dd166c
 #5 [ffff8001116ef8e0] wait_for_completion_interruptible at ffff800008dd1898
 #6 [ffff8001116ef8f0] handle_async_copy at ffff8000055142f4 [nfsv4]
 #7 [ffff8001116ef970] _nfs42_proc_copy at ffff8000055147c8 [nfsv4]
 #8 [ffff8001116efa80] nfs42_proc_copy at ffff800005514cf0 [nfsv4]
 #9 [ffff8001116efc50] __nfs4_copy_file_range.constprop.0 at ffff8000054ed694 [nfsv4]

The NULL-pointer dereference was due to nfs42_complete_copies() listed
the nfs_server->ss_copies by the field ss_copies of nfs4_copy_state.
So the nfs4_copy_state address ffff0100f98fa3f0 was offset by 0x10 and
the data accessed through this pointer was also incorrect. Generally,
the ordered list nfs4_state_owner->so_states indicate open(O_RDWR) or
open(O_WRITE) states are reclaimed firstly by nfs4_reclaim_open_state().
When destination state reclaim is failed with NFS_STATE_RECOVERY_FAILED
and copies are not deleted in nfs_server->ss_copies, the source state
may be passed to the nfs42_complete_copies() process earlier, resulting
in this crash scene finally. To solve this issue, we add a list_head
nfs_server->ss_src_copies for a server-to-server copy specially.

Fixes: 0e65a32 ("NFS: handle source server reboot")
Signed-off-by: Yanjun Zhang <zhangyanjun@cestc.cn>
Reviewed-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <anna.schumaker@oracle.com>
pcolberg pushed a commit that referenced this pull request Oct 21, 2024
Fix a kernel panic in the br_netfilter module when sending untagged
traffic via a VxLAN device.
This happens during the check for fragmentation in br_nf_dev_queue_xmit.

It is dependent on:
1) the br_netfilter module being loaded;
2) net.bridge.bridge-nf-call-iptables set to 1;
3) a bridge with a VxLAN (single-vxlan-device) netdevice as a bridge port;
4) untagged frames with size higher than the VxLAN MTU forwarded/flooded

When forwarding the untagged packet to the VxLAN bridge port, before
the netfilter hooks are called, br_handle_egress_vlan_tunnel is called and
changes the skb_dst to the tunnel dst. The tunnel_dst is a metadata type
of dst, i.e., skb_valid_dst(skb) is false, and metadata->dst.dev is NULL.

Then in the br_netfilter hooks, in br_nf_dev_queue_xmit, there's a check
for frames that needs to be fragmented: frames with higher MTU than the
VxLAN device end up calling br_nf_ip_fragment, which in turns call
ip_skb_dst_mtu.

The ip_dst_mtu tries to use the skb_dst(skb) as if it was a valid dst
with valid dst->dev, thus the crash.

This case was never supported in the first place, so drop the packet
instead.

PING 10.0.0.2 (10.0.0.2) from 0.0.0.0 h1-eth0: 2000(2028) bytes of data.
[  176.291791] Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000110
[  176.292101] Mem abort info:
[  176.292184]   ESR = 0x0000000096000004
[  176.292322]   EC = 0x25: DABT (current EL), IL = 32 bits
[  176.292530]   SET = 0, FnV = 0
[  176.292709]   EA = 0, S1PTW = 0
[  176.292862]   FSC = 0x04: level 0 translation fault
[  176.293013] Data abort info:
[  176.293104]   ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[  176.293488]   CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[  176.293787]   GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[  176.293995] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000043ef5000
[  176.294166] [0000000000000110] pgd=0000000000000000,
p4d=0000000000000000
[  176.294827] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[  176.295252] Modules linked in: vxlan ip6_udp_tunnel udp_tunnel veth
br_netfilter bridge stp llc ipv6 crct10dif_ce
[  176.295923] CPU: 0 PID: 188 Comm: ping Not tainted
6.8.0-rc3-g5b3fbd61b9d1 #2
[  176.296314] Hardware name: linux,dummy-virt (DT)
[  176.296535] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS
BTYPE=--)
[  176.296808] pc : br_nf_dev_queue_xmit+0x390/0x4ec [br_netfilter]
[  176.297382] lr : br_nf_dev_queue_xmit+0x2ac/0x4ec [br_netfilter]
[  176.297636] sp : ffff800080003630
[  176.297743] x29: ffff800080003630 x28: 0000000000000008 x27:
ffff6828c49ad9f8
[  176.298093] x26: ffff6828c49ad000 x25: 0000000000000000 x24:
00000000000003e8
[  176.298430] x23: 0000000000000000 x22: ffff6828c4960b40 x21:
ffff6828c3b16d28
[  176.298652] x20: ffff6828c3167048 x19: ffff6828c3b16d00 x18:
0000000000000014
[  176.298926] x17: ffffb0476322f000 x16: ffffb7e164023730 x15:
0000000095744632
[  176.299296] x14: ffff6828c3f1c880 x13: 0000000000000002 x12:
ffffb7e137926a70
[  176.299574] x11: 0000000000000001 x10: ffff6828c3f1c898 x9 :
0000000000000000
[  176.300049] x8 : ffff6828c49bf070 x7 : 0008460f18d5f20e x6 :
f20e0100bebafeca
[  176.300302] x5 : ffff6828c7f918fe x4 : ffff6828c49bf070 x3 :
0000000000000000
[  176.300586] x2 : 0000000000000000 x1 : ffff6828c3c7ad00 x0 :
ffff6828c7f918f0
[  176.300889] Call trace:
[  176.301123]  br_nf_dev_queue_xmit+0x390/0x4ec [br_netfilter]
[  176.301411]  br_nf_post_routing+0x2a8/0x3e4 [br_netfilter]
[  176.301703]  nf_hook_slow+0x48/0x124
[  176.302060]  br_forward_finish+0xc8/0xe8 [bridge]
[  176.302371]  br_nf_hook_thresh+0x124/0x134 [br_netfilter]
[  176.302605]  br_nf_forward_finish+0x118/0x22c [br_netfilter]
[  176.302824]  br_nf_forward_ip.part.0+0x264/0x290 [br_netfilter]
[  176.303136]  br_nf_forward+0x2b8/0x4e0 [br_netfilter]
[  176.303359]  nf_hook_slow+0x48/0x124
[  176.303803]  __br_forward+0xc4/0x194 [bridge]
[  176.304013]  br_flood+0xd4/0x168 [bridge]
[  176.304300]  br_handle_frame_finish+0x1d4/0x5c4 [bridge]
[  176.304536]  br_nf_hook_thresh+0x124/0x134 [br_netfilter]
[  176.304978]  br_nf_pre_routing_finish+0x29c/0x494 [br_netfilter]
[  176.305188]  br_nf_pre_routing+0x250/0x524 [br_netfilter]
[  176.305428]  br_handle_frame+0x244/0x3cc [bridge]
[  176.305695]  __netif_receive_skb_core.constprop.0+0x33c/0xecc
[  176.306080]  __netif_receive_skb_one_core+0x40/0x8c
[  176.306197]  __netif_receive_skb+0x18/0x64
[  176.306369]  process_backlog+0x80/0x124
[  176.306540]  __napi_poll+0x38/0x17c
[  176.306636]  net_rx_action+0x124/0x26c
[  176.306758]  __do_softirq+0x100/0x26c
[  176.307051]  ____do_softirq+0x10/0x1c
[  176.307162]  call_on_irq_stack+0x24/0x4c
[  176.307289]  do_softirq_own_stack+0x1c/0x2c
[  176.307396]  do_softirq+0x54/0x6c
[  176.307485]  __local_bh_enable_ip+0x8c/0x98
[  176.307637]  __dev_queue_xmit+0x22c/0xd28
[  176.307775]  neigh_resolve_output+0xf4/0x1a0
[  176.308018]  ip_finish_output2+0x1c8/0x628
[  176.308137]  ip_do_fragment+0x5b4/0x658
[  176.308279]  ip_fragment.constprop.0+0x48/0xec
[  176.308420]  __ip_finish_output+0xa4/0x254
[  176.308593]  ip_finish_output+0x34/0x130
[  176.308814]  ip_output+0x6c/0x108
[  176.308929]  ip_send_skb+0x50/0xf0
[  176.309095]  ip_push_pending_frames+0x30/0x54
[  176.309254]  raw_sendmsg+0x758/0xaec
[  176.309568]  inet_sendmsg+0x44/0x70
[  176.309667]  __sys_sendto+0x110/0x178
[  176.309758]  __arm64_sys_sendto+0x28/0x38
[  176.309918]  invoke_syscall+0x48/0x110
[  176.310211]  el0_svc_common.constprop.0+0x40/0xe0
[  176.310353]  do_el0_svc+0x1c/0x28
[  176.310434]  el0_svc+0x34/0xb4
[  176.310551]  el0t_64_sync_handler+0x120/0x12c
[  176.310690]  el0t_64_sync+0x190/0x194
[  176.311066] Code: f9402e61 79402aa2 927ff821 f9400023 (f9408860)
[  176.315743] ---[ end trace 0000000000000000 ]---
[  176.316060] Kernel panic - not syncing: Oops: Fatal exception in
interrupt
[  176.316371] Kernel Offset: 0x37e0e3000000 from 0xffff800080000000
[  176.316564] PHYS_OFFSET: 0xffff97d780000000
[  176.316782] CPU features: 0x0,88000203,3c020000,0100421b
[  176.317210] Memory Limit: none
[  176.317527] ---[ end Kernel panic - not syncing: Oops: Fatal
Exception in interrupt ]---\

Fixes: 11538d0 ("bridge: vlan dst_metadata hooks in ingress and egress paths")
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Signed-off-by: Andy Roulin <aroulin@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Link: https://patch.msgid.link/20241001154400.22787-2-aroulin@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
pcolberg pushed a commit that referenced this pull request Oct 21, 2024
Andy Roulin says:

====================
netfilter: br_netfilter: fix panic with metadata_dst skb

There's a kernel panic possible in the br_netfilter module when sending
untagged traffic via a VxLAN device. Traceback is included below.
This happens during the check for fragmentation in br_nf_dev_queue_xmit
if the MTU on the VxLAN device is not big enough.

It is dependent on:
1) the br_netfilter module being loaded;
2) net.bridge.bridge-nf-call-iptables set to 1;
3) a bridge with a VxLAN (single-vxlan-device) netdevice as a bridge port;
4) untagged frames with size higher than the VxLAN MTU forwarded/flooded

This case was never supported in the first place, so the first patch drops
such packets.

A regression selftest is added as part of the second patch.

PING 10.0.0.2 (10.0.0.2) from 0.0.0.0 h1-eth0: 2000(2028) bytes of data.
[  176.291791] Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000110
[  176.292101] Mem abort info:
[  176.292184]   ESR = 0x0000000096000004
[  176.292322]   EC = 0x25: DABT (current EL), IL = 32 bits
[  176.292530]   SET = 0, FnV = 0
[  176.292709]   EA = 0, S1PTW = 0
[  176.292862]   FSC = 0x04: level 0 translation fault
[  176.293013] Data abort info:
[  176.293104]   ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[  176.293488]   CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[  176.293787]   GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[  176.293995] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000043ef5000
[  176.294166] [0000000000000110] pgd=0000000000000000,
p4d=0000000000000000
[  176.294827] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[  176.295252] Modules linked in: vxlan ip6_udp_tunnel udp_tunnel veth
br_netfilter bridge stp llc ipv6 crct10dif_ce
[  176.295923] CPU: 0 PID: 188 Comm: ping Not tainted
6.8.0-rc3-g5b3fbd61b9d1 #2
[  176.296314] Hardware name: linux,dummy-virt (DT)
[  176.296535] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS
BTYPE=--)
[  176.296808] pc : br_nf_dev_queue_xmit+0x390/0x4ec [br_netfilter]
[  176.297382] lr : br_nf_dev_queue_xmit+0x2ac/0x4ec [br_netfilter]
[  176.297636] sp : ffff800080003630
[  176.297743] x29: ffff800080003630 x28: 0000000000000008 x27:
ffff6828c49ad9f8
[  176.298093] x26: ffff6828c49ad000 x25: 0000000000000000 x24:
00000000000003e8
[  176.298430] x23: 0000000000000000 x22: ffff6828c4960b40 x21:
ffff6828c3b16d28
[  176.298652] x20: ffff6828c3167048 x19: ffff6828c3b16d00 x18:
0000000000000014
[  176.298926] x17: ffffb0476322f000 x16: ffffb7e164023730 x15:
0000000095744632
[  176.299296] x14: ffff6828c3f1c880 x13: 0000000000000002 x12:
ffffb7e137926a70
[  176.299574] x11: 0000000000000001 x10: ffff6828c3f1c898 x9 :
0000000000000000
[  176.300049] x8 : ffff6828c49bf070 x7 : 0008460f18d5f20e x6 :
f20e0100bebafeca
[  176.300302] x5 : ffff6828c7f918fe x4 : ffff6828c49bf070 x3 :
0000000000000000
[  176.300586] x2 : 0000000000000000 x1 : ffff6828c3c7ad00 x0 :
ffff6828c7f918f0
[  176.300889] Call trace:
[  176.301123]  br_nf_dev_queue_xmit+0x390/0x4ec [br_netfilter]
[  176.301411]  br_nf_post_routing+0x2a8/0x3e4 [br_netfilter]
[  176.301703]  nf_hook_slow+0x48/0x124
[  176.302060]  br_forward_finish+0xc8/0xe8 [bridge]
[  176.302371]  br_nf_hook_thresh+0x124/0x134 [br_netfilter]
[  176.302605]  br_nf_forward_finish+0x118/0x22c [br_netfilter]
[  176.302824]  br_nf_forward_ip.part.0+0x264/0x290 [br_netfilter]
[  176.303136]  br_nf_forward+0x2b8/0x4e0 [br_netfilter]
[  176.303359]  nf_hook_slow+0x48/0x124
[  176.303803]  __br_forward+0xc4/0x194 [bridge]
[  176.304013]  br_flood+0xd4/0x168 [bridge]
[  176.304300]  br_handle_frame_finish+0x1d4/0x5c4 [bridge]
[  176.304536]  br_nf_hook_thresh+0x124/0x134 [br_netfilter]
[  176.304978]  br_nf_pre_routing_finish+0x29c/0x494 [br_netfilter]
[  176.305188]  br_nf_pre_routing+0x250/0x524 [br_netfilter]
[  176.305428]  br_handle_frame+0x244/0x3cc [bridge]
[  176.305695]  __netif_receive_skb_core.constprop.0+0x33c/0xecc
[  176.306080]  __netif_receive_skb_one_core+0x40/0x8c
[  176.306197]  __netif_receive_skb+0x18/0x64
[  176.306369]  process_backlog+0x80/0x124
[  176.306540]  __napi_poll+0x38/0x17c
[  176.306636]  net_rx_action+0x124/0x26c
[  176.306758]  __do_softirq+0x100/0x26c
[  176.307051]  ____do_softirq+0x10/0x1c
[  176.307162]  call_on_irq_stack+0x24/0x4c
[  176.307289]  do_softirq_own_stack+0x1c/0x2c
[  176.307396]  do_softirq+0x54/0x6c
[  176.307485]  __local_bh_enable_ip+0x8c/0x98
[  176.307637]  __dev_queue_xmit+0x22c/0xd28
[  176.307775]  neigh_resolve_output+0xf4/0x1a0
[  176.308018]  ip_finish_output2+0x1c8/0x628
[  176.308137]  ip_do_fragment+0x5b4/0x658
[  176.308279]  ip_fragment.constprop.0+0x48/0xec
[  176.308420]  __ip_finish_output+0xa4/0x254
[  176.308593]  ip_finish_output+0x34/0x130
[  176.308814]  ip_output+0x6c/0x108
[  176.308929]  ip_send_skb+0x50/0xf0
[  176.309095]  ip_push_pending_frames+0x30/0x54
[  176.309254]  raw_sendmsg+0x758/0xaec
[  176.309568]  inet_sendmsg+0x44/0x70
[  176.309667]  __sys_sendto+0x110/0x178
[  176.309758]  __arm64_sys_sendto+0x28/0x38
[  176.309918]  invoke_syscall+0x48/0x110
[  176.310211]  el0_svc_common.constprop.0+0x40/0xe0
[  176.310353]  do_el0_svc+0x1c/0x28
[  176.310434]  el0_svc+0x34/0xb4
[  176.310551]  el0t_64_sync_handler+0x120/0x12c
[  176.310690]  el0t_64_sync+0x190/0x194
[  176.311066] Code: f9402e61 79402aa2 927ff821 f9400023 (f9408860)
[  176.315743] ---[ end trace 0000000000000000 ]---
[  176.316060] Kernel panic - not syncing: Oops: Fatal exception in
interrupt
[  176.316371] Kernel Offset: 0x37e0e3000000 from 0xffff800080000000
[  176.316564] PHYS_OFFSET: 0xffff97d780000000
[  176.316782] CPU features: 0x0,88000203,3c020000,0100421b
[  176.317210] Memory Limit: none
[  176.317527] ---[ end Kernel panic - not syncing: Oops: Fatal
Exception in interrupt ]---\
====================

Link: https://patch.msgid.link/20241001154400.22787-1-aroulin@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
pcolberg pushed a commit that referenced this pull request Oct 21, 2024
Hou Tao says:

====================
Check the remaining info_cnt before repeating btf fields

From: Hou Tao <houtao1@huawei.com>

Hi,

The patch set adds the missed check again info_cnt when flattening the
array of nested struct. The problem was spotted when developing dynptr
key support for hash map. Patch #1 adds the missed check and patch #2
adds three success test cases and one failure test case for the problem.

Comments are always welcome.

Change Log:
v2:
 * patch #1: check info_cnt in btf_repeat_fields()
 * patch #2: use a hard-coded number instead of BTF_FIELDS_MAX, because
             BTF_FIELDS_MAX is not always available in vmlinux.h (e.g.,
	     for llvm 17/18)

v1: https://lore.kernel.org/bpf/20240911110557.2759801-1-houtao@huaweicloud.com/T/#t
====================

Link: https://lore.kernel.org/r/20241008071114.3718177-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
pcolberg pushed a commit that referenced this pull request Oct 21, 2024
Syzkaller reported a lockdep splat:

  ============================================
  WARNING: possible recursive locking detected
  6.11.0-rc6-syzkaller-00019-g67784a74e258 #0 Not tainted
  --------------------------------------------
  syz-executor364/5113 is trying to acquire lock:
  ffff8880449f1958 (k-slock-AF_INET){+.-.}-{2:2}, at: spin_lock include/linux/spinlock.h:351 [inline]
  ffff8880449f1958 (k-slock-AF_INET){+.-.}-{2:2}, at: sk_clone_lock+0x2cd/0xf40 net/core/sock.c:2328

  but task is already holding lock:
  ffff88803fe3cb58 (k-slock-AF_INET){+.-.}-{2:2}, at: spin_lock include/linux/spinlock.h:351 [inline]
  ffff88803fe3cb58 (k-slock-AF_INET){+.-.}-{2:2}, at: sk_clone_lock+0x2cd/0xf40 net/core/sock.c:2328

  other info that might help us debug this:
   Possible unsafe locking scenario:

         CPU0
         ----
    lock(k-slock-AF_INET);
    lock(k-slock-AF_INET);

   *** DEADLOCK ***

   May be due to missing lock nesting notation

  7 locks held by syz-executor364/5113:
   #0: ffff8880449f0e18 (sk_lock-AF_INET){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1607 [inline]
   #0: ffff8880449f0e18 (sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_sendmsg+0x153/0x1b10 net/mptcp/protocol.c:1806
   #1: ffff88803fe39ad8 (k-sk_lock-AF_INET){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1607 [inline]
   #1: ffff88803fe39ad8 (k-sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_sendmsg_fastopen+0x11f/0x530 net/mptcp/protocol.c:1727
   #2: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:326 [inline]
   #2: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:838 [inline]
   #2: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: __ip_queue_xmit+0x5f/0x1b80 net/ipv4/ip_output.c:470
   #3: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:326 [inline]
   #3: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:838 [inline]
   #3: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: ip_finish_output2+0x45f/0x1390 net/ipv4/ip_output.c:228
   #4: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: local_lock_acquire include/linux/local_lock_internal.h:29 [inline]
   #4: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: process_backlog+0x33b/0x15b0 net/core/dev.c:6104
   #5: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:326 [inline]
   #5: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:838 [inline]
   #5: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: ip_local_deliver_finish+0x230/0x5f0 net/ipv4/ip_input.c:232
   #6: ffff88803fe3cb58 (k-slock-AF_INET){+.-.}-{2:2}, at: spin_lock include/linux/spinlock.h:351 [inline]
   #6: ffff88803fe3cb58 (k-slock-AF_INET){+.-.}-{2:2}, at: sk_clone_lock+0x2cd/0xf40 net/core/sock.c:2328

  stack backtrace:
  CPU: 0 UID: 0 PID: 5113 Comm: syz-executor364 Not tainted 6.11.0-rc6-syzkaller-00019-g67784a74e258 #0
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
  Call Trace:
   <IRQ>
   __dump_stack lib/dump_stack.c:93 [inline]
   dump_stack_lvl+0x241/0x360 lib/dump_stack.c:119
   check_deadlock kernel/locking/lockdep.c:3061 [inline]
   validate_chain+0x15d3/0x5900 kernel/locking/lockdep.c:3855
   __lock_acquire+0x137a/0x2040 kernel/locking/lockdep.c:5142
   lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5759
   __raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline]
   _raw_spin_lock+0x2e/0x40 kernel/locking/spinlock.c:154
   spin_lock include/linux/spinlock.h:351 [inline]
   sk_clone_lock+0x2cd/0xf40 net/core/sock.c:2328
   mptcp_sk_clone_init+0x32/0x13c0 net/mptcp/protocol.c:3279
   subflow_syn_recv_sock+0x931/0x1920 net/mptcp/subflow.c:874
   tcp_check_req+0xfe4/0x1a20 net/ipv4/tcp_minisocks.c:853
   tcp_v4_rcv+0x1c3e/0x37f0 net/ipv4/tcp_ipv4.c:2267
   ip_protocol_deliver_rcu+0x22e/0x440 net/ipv4/ip_input.c:205
   ip_local_deliver_finish+0x341/0x5f0 net/ipv4/ip_input.c:233
   NF_HOOK+0x3a4/0x450 include/linux/netfilter.h:314
   NF_HOOK+0x3a4/0x450 include/linux/netfilter.h:314
   __netif_receive_skb_one_core net/core/dev.c:5661 [inline]
   __netif_receive_skb+0x2bf/0x650 net/core/dev.c:5775
   process_backlog+0x662/0x15b0 net/core/dev.c:6108
   __napi_poll+0xcb/0x490 net/core/dev.c:6772
   napi_poll net/core/dev.c:6841 [inline]
   net_rx_action+0x89b/0x1240 net/core/dev.c:6963
   handle_softirqs+0x2c4/0x970 kernel/softirq.c:554
   do_softirq+0x11b/0x1e0 kernel/softirq.c:455
   </IRQ>
   <TASK>
   __local_bh_enable_ip+0x1bb/0x200 kernel/softirq.c:382
   local_bh_enable include/linux/bottom_half.h:33 [inline]
   rcu_read_unlock_bh include/linux/rcupdate.h:908 [inline]
   __dev_queue_xmit+0x1763/0x3e90 net/core/dev.c:4450
   dev_queue_xmit include/linux/netdevice.h:3105 [inline]
   neigh_hh_output include/net/neighbour.h:526 [inline]
   neigh_output include/net/neighbour.h:540 [inline]
   ip_finish_output2+0xd41/0x1390 net/ipv4/ip_output.c:235
   ip_local_out net/ipv4/ip_output.c:129 [inline]
   __ip_queue_xmit+0x118c/0x1b80 net/ipv4/ip_output.c:535
   __tcp_transmit_skb+0x2544/0x3b30 net/ipv4/tcp_output.c:1466
   tcp_rcv_synsent_state_process net/ipv4/tcp_input.c:6542 [inline]
   tcp_rcv_state_process+0x2c32/0x4570 net/ipv4/tcp_input.c:6729
   tcp_v4_do_rcv+0x77d/0xc70 net/ipv4/tcp_ipv4.c:1934
   sk_backlog_rcv include/net/sock.h:1111 [inline]
   __release_sock+0x214/0x350 net/core/sock.c:3004
   release_sock+0x61/0x1f0 net/core/sock.c:3558
   mptcp_sendmsg_fastopen+0x1ad/0x530 net/mptcp/protocol.c:1733
   mptcp_sendmsg+0x1884/0x1b10 net/mptcp/protocol.c:1812
   sock_sendmsg_nosec net/socket.c:730 [inline]
   __sock_sendmsg+0x1a6/0x270 net/socket.c:745
   ____sys_sendmsg+0x525/0x7d0 net/socket.c:2597
   ___sys_sendmsg net/socket.c:2651 [inline]
   __sys_sendmmsg+0x3b2/0x740 net/socket.c:2737
   __do_sys_sendmmsg net/socket.c:2766 [inline]
   __se_sys_sendmmsg net/socket.c:2763 [inline]
   __x64_sys_sendmmsg+0xa0/0xb0 net/socket.c:2763
   do_syscall_x64 arch/x86/entry/common.c:52 [inline]
   do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
   entry_SYSCALL_64_after_hwframe+0x77/0x7f
  RIP: 0033:0x7f04fb13a6b9
  Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 01 1a 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
  RSP: 002b:00007ffd651f42d8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133
  RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f04fb13a6b9
  RDX: 0000000000000001 RSI: 0000000020000d00 RDI: 0000000000000004
  RBP: 00007ffd651f4310 R08: 0000000000000001 R09: 0000000000000001
  R10: 0000000020000080 R11: 0000000000000246 R12: 00000000000f4240
  R13: 00007f04fb187449 R14: 00007ffd651f42f4 R15: 00007ffd651f4300
   </TASK>

As noted by Cong Wang, the splat is false positive, but the code
path leading to the report is an unexpected one: a client is
attempting an MPC handshake towards the in-kernel listener created
by the in-kernel PM for a port based signal endpoint.

Such connection will be never accepted; many of them can make the
listener queue full and preventing the creation of MPJ subflow via
such listener - its intended role.

Explicitly detect this scenario at initial-syn time and drop the
incoming MPC request.

Fixes: 1729cf1 ("mptcp: create the listening socket for new port")
Cc: stable@vger.kernel.org
Reported-by: syzbot+f4aacdfef2c6a6529c3e@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=f4aacdfef2c6a6529c3e
Cc: Cong Wang <cong.wang@bytedance.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Reviewed-by: Matthieu Baerts (NGI0) <matttbe@kernel.org>
Reviewed-by: Mat Martineau <martineau@kernel.org>
Signed-off-by: Matthieu Baerts (NGI0) <matttbe@kernel.org>
Link: https://patch.msgid.link/20241014-net-mptcp-mpc-port-endp-v2-1-7faea8e6b6ae@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
@pcolberg pcolberg force-pushed the fpga-ofs-dev branch 5 times, most recently from 2a46645 to 0148ebc Compare January 15, 2025 22:04
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants