generated from OPCODE-Open-Spring-Fest/template
-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #159 from Ankur-Dwivedi22/hard_day10
chore: completed hard day 10 task author : Ankur-Dwivedi22
- Loading branch information
Showing
1 changed file
with
165 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,165 @@ | ||
//write your code here | ||
// write your code here | ||
#include <bits/stdc++.h> | ||
using namespace std; | ||
|
||
// Constant modulus value used for modular arithmetic | ||
const long long MOD = 1000000007; | ||
|
||
// Function to calculate modular exponentiation (a^b mod MOD) | ||
long long modpow(long long a, long long b) | ||
{ | ||
long long ans = 1; | ||
// Loop until b is 0 | ||
while (b > 0) | ||
{ | ||
// If b is odd, multiply a to the answer and perform modulo operation | ||
if (b % 2 == 1) | ||
{ | ||
ans *= a; | ||
ans %= MOD; | ||
} | ||
// Square a and perform modulo operation | ||
a *= a; | ||
a %= MOD; | ||
// Divide b by 2 (for efficient exponentiation) | ||
b /= 2; | ||
} | ||
return ans; | ||
} | ||
|
||
// Function to calculate modular inverse (a^-1 mod MOD) | ||
long long modinv(long long a) | ||
{ | ||
// Use modpow to calculate a^(MOD-2) | ||
return modpow(a, MOD - 2); | ||
} | ||
|
||
// Pre-computed factorials (mod MOD) and inverses | ||
vector<long long> mf = {1}; | ||
vector<long long> mfi = {1}; | ||
|
||
// Function to calculate modular factorial (n! mod MOD) | ||
long long modfact(int n) | ||
{ | ||
// If n is already pre-computed, return it | ||
if (mf.size() > n) | ||
{ | ||
return mf[n]; | ||
} | ||
else | ||
{ | ||
// Iterate from the end of the pre-computed values to n | ||
for (int i = mf.size(); i <= n; i++) | ||
{ | ||
// Calculate next factorial and its inverse (mod MOD) | ||
long long next = mf.back() * i % MOD; | ||
mf.push_back(next); | ||
mfi.push_back(modinv(next)); | ||
} | ||
return mf[n]; | ||
} | ||
} | ||
|
||
int main() | ||
{ | ||
// Input n (number of elements) and k (group size) | ||
int n, k; | ||
cin >> n >> k; | ||
|
||
// Pre-compute inverses for 1 to k+1 (mod MOD) | ||
vector<long long> INV(k + 2); | ||
for (int i = 1; i < k + 2; i++) | ||
{ | ||
INV[i] = modinv(i); | ||
} | ||
|
||
// Pre-compute binomial coefficients (mod MOD) using pre-calculated factorials and inverses | ||
vector<vector<long long>> binom(k * 2 + 1, vector<long long>(k + 2, 0)); | ||
for (int i = 0; i <= k * 2; i++) | ||
{ | ||
for (int j = 0; j <= k + 1; j++) | ||
{ | ||
int a = n - i, b = j; | ||
// Check for valid range of a and b for calculating binomial coefficient | ||
if (a >= 0 && 0 <= b && b <= a) | ||
{ | ||
binom[i][j] = 1; | ||
for (int x = 0; x < b; x++) | ||
{ | ||
// Calculate binomial coefficient using formula with modular arithmetic | ||
binom[i][j] *= a - x; | ||
binom[i][j] %= MOD; | ||
binom[i][j] *= INV[x + 1]; | ||
binom[i][j] %= MOD; | ||
} | ||
} | ||
} | ||
} | ||
|
||
// dp table to store intermediate results | ||
vector<vector<long long>> dp(k + 1, vector<long long>(k + 1, 0)); | ||
// Base case: dp[0][0] = 1 (empty group) | ||
dp[0][0] = 1; | ||
|
||
// Dynamic programming loop to fill the dp table | ||
for (int i = 1; i <= k; i++) | ||
{ | ||
for (int j = k - i; j >= 0; j--) | ||
{ | ||
for (int c = 0; c < k; c++) | ||
{ | ||
// If there are elements in the current group (dp[j][c] > 0) | ||
if (dp[j][c] > 0) | ||
{ | ||
long long p = 1; | ||
int c2 = j + c; | ||
int cnt = 0; | ||
for (int j2 = j + i; j2 <= k; j2 += i) | ||
{ | ||
c2 += i + 1; | ||
if (c2 > n) | ||
{ | ||
break; | ||
} | ||
cnt++; | ||
if (c + cnt > k) | ||
{ | ||
break; | ||
} | ||
p *= binom[c2 - (i + 1)][i + 1]; | ||
p %= MOD; | ||
p *= modfact(i); | ||
p %= MOD; | ||
p *= INV[cnt]; | ||
p %= MOD; | ||
dp[j2][c + cnt] += dp[j][c] * p; | ||
dp[j2][c + cnt] %= MOD; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
vector<long long> ans(k + 1, 0); | ||
for (int i = 0; i <= k; i++) | ||
{ | ||
for (int j = 0; j <= k; j++) | ||
{ | ||
ans[i] += dp[i][j]; | ||
ans[i] %= MOD; | ||
} | ||
} | ||
for (int i = 0; i < k - 1; i++) | ||
{ | ||
ans[i + 2] += ans[i]; | ||
ans[i + 2] %= MOD; | ||
} | ||
for (int i = 1; i <= k; i++) | ||
{ | ||
cout << ans[i]; | ||
if (i < k) | ||
{ | ||
cout << ' '; | ||
} | ||
} | ||
cout << endl; | ||
} |