-
Notifications
You must be signed in to change notification settings - Fork 0
Ruimtescanner L in formules
Mathematical description of the Ruimtescanner L, which is a simplicifation of Ruimtescanner XL
See also: Transformation Potential II.
- i : building and site index
- a : actor type, a union of household type h combined with income class, and labour type l.
- r : housing zone (aka region), as defined by LMS, Municipality, or Corop.
- b : building type
- t : time-period. St = 0i indicates a state S at the start of the first time period.
- c : conversion option (aka construction option)
- Geography:
- Iri: Incidence (membership) of building i to region r.
- Designer's input:
-
$\sideset{^c}{_b}{CS}$ : Amount of construction of buildings (#residences for housing and #m2 for labour related buildings) of type b for conversion option c per unit (ha) of land. -
$\sideset{^c}{}{CE}_{b}$ : Expenses (aka costs) of constructing one unit of b. -
$\sideset{^c}{}{CE}$ : Extra expenses (aka costs) for conversion c. -
$\sideset{^c}{}{CB} := \sideset{^c}{}{CE} + \sum\limits_b \sideset{^c}{_b}{CE} \cdot \sideset{^c}{_b}{CS}$ : Cost of a full conversion of type c.
-
- household preferences input:
- Va: max price for actor type a.
-
$\sideset{^{b}}{^x_i}W$ : WOZ value. - Ra**b: value-discount that actor a has for building type b, such as large household that don't fit into small houses.
- Input for time-period t:
-
$\sideset{^a_t}{_r}D$ : Demand of actor a in region r. -
$\sideset{^b_t}{_i}S$ : Stock of accommodation of type b at site i.
-
- Dynamic state variables
-
$\sideset{^{ab}_t}{_i}A$ : Allocation of existing buildings -
$\sideset{^c_t}{_i}N$ : New Construction of option c - $\sideset{^b_t}{i}N := \sum\limits{c} \sideset{^c_t}{_i}N \cdot {CS}^c_b$ : New Construction of building type b.
-
$\sideset{^{ab}_t}{_i}N$ : Allocation of new buildings -
$\sideset{^c_t}{_i}C := \sideset{^c}{}{CB} + \sideset{^b_t}{^A_i}v \cdot \sideset{^b_t}{_i}S$ : Cost of a full conversion at i including cost of expropriation. -
$\sideset{^c_t}{_i}Y := \sum\limits_b \sideset{^{b}_t}{^N_i}v \cdot \sideset{^c}{_b}{CS} - \sideset{^c_t}{_i}C$ : Yield of a full conversion at i. - $\sideset{^{ab}_t}{^A_i}v := \min \left( \sideset{^{b}}{^A_i}W + \sideset{^a_t}{r}\lambda + R{ab}, V^a \right)$ : value for a of a b at existing site i.
-
$\sideset{^{ab}_t}{^N_i}v :=$ : value of a b for a at new site i. -
$\forall a: \sideset{^{b}_t}{^A_i}v \ge \sideset{^{ab}_t}{^A_i}v \space \bot \space \sideset{^{ab}_t}{_i}A \ge 0$ ; smoothed by$\sideset{^{b}_t}{^A_i}v := \log(\sum\limits_a \exp(\beta_3 \cdot \sideset{^{ab}_t}{^A_i}v )) \cdot \beta_3^{-1}$ . -
$\forall a: \sideset{^{b}_t}{^N_i}v \ge \sideset{^{ab}_t}{^N_i}v \space \bot \space \sideset{^{ab}_t}{_i}N \ge 0$ ; smoothed by$\sideset{^{b}_t}{^A_i}v:= \log(\sum\limits_a \exp(\beta_4 \cdot \sideset{^{ab}_t}{^N_i}v )) \cdot \beta_4^{-1}$ . - building specific WOZ-value constraint:
$\sideset{^{b}_t}{^x_i}v \le \sideset{^{b}}{^x_i}W$ ; this is sort of met when$\sideset{^a_t}{_r}\lambda \le 0$ and Ra**b ≤ 0.
-
- r: Corop region
- a: 13 Different Tigris Houshold types with varying count, job status, and age group(s) + 3 additional types, to be discussed.
- a: Clusters of observed recent (modus building year > 2000) representative building projects, including two extreme alternatives.
Conversion Options:
- C**Sbc: Cluster Analyse Nederlandse Woningvoorraad, Jip Claassens (Juli 2018).
- C**Bc: obv Bouwkompas.
Input:
-
$\sideset{^a_t}{_r}D$ : Tigris -
$\sideset{^b_t}{_i}S$ : Ruimtescanner - Va: Maximum price payable by actor a.
At each time period, we try to find those prices
Excess households are assumed to be located at regional campings, for which a Camping residue C is defined as:
\( \sideset{^a_t}{_r}C := \sideset{^a_t}{_r}D - I^i_r \cdot \sum\limits_b \left( \sideset{^{ab}_t}{_i}A ( 1 - X_i ) + \sideset{^{ab}_t}{_i}N \right) \bot \sideset{^a_t}{_r}\lambda \le 0 \)
Vacant building stock will be represented as a negative Camping residue.
The control variable for making
TODO: toevoegen ortho budget beschikbaarheid
- Allocation meets existing stock:
$\forall t,b,i: \sum\limits_a \sideset{^{ab}_t}{_i}A \le \sideset{^b_t}{_i}S$ : controlled by$\sideset{^b_t}{^A_i}\lambda$ - Allocation meets new stock:
$\forall t,b,i: \sum\limits_{a} \sideset{^{ab}_t}{^N_i}N \le \sideset{^b_t}{_i}N$ , - Maximum conversion per site:
$\forall t,i: \sum\limits_c \sideset{^{c}_t}{_i}N \le 1$ : controlled by$\sideset{_t}{^N_i}\lambda$ - Conversion's financial feasibility:
$\forall t,c,i: \sideset{^c_t}{_i}N \ge 0 \perp \sideset{^c_t}{_i}C \ge \sideset{^{b}_t}{^N_i}v \times \sideset{^b_t}{_i}S$ ,
Allocation of existing and new buildings:
Construction:
Land use modelling documentation