臺灣科技大學資訊工程系
人工智慧與邊緣運算實務 ( CS5149701 )
110學年度第二學期 ( 2022/2/16 - 2022/6/01 )
近來年人工智慧已逐漸普及到每個領域,但許多基於低功耗、低延時、低成本及高隱私的邊緣智慧需求未能得到滿足。本課程將從基礎深度學習理論、邊緣智慧硬體應用、資料集建置、客製化模型訓練到推論環境佈署,讓學生透過Google Colab, Intel OpenVINO, OpenCV等開源工具充分學習到如何規畫及實踐不同類型的邊緣智慧應用專案。
As adoption rates rise for artificial intelligence and deep learning, the ability to process various data with low power, low latency, low cost, and high privacy becomes increasingly important. Hence there is growing momentum to migrate the processing from centralized cloud servers to decentralized and localized edge computing. This course will introduce fundamental deep learning knowledge, edge AI hardware and applications, dataset construction, customized model training, and inference environment deployment. Students will be taught to utilize various open source tools (such as Google Colab, Intel OpenVINO, OpenCV) and practice a variety of edge AI application projects.
許哲豪 (Jack Hsu) 博士
臺灣科技大學 資工系 兼任助理教授
omnixir@gmail.com
【個人網站】
2022/2/16 ~ 2022/6/01,每週三上午第2,3,4節
-
人工智慧簡介
1.1. 人工智慧
1.2. 機器學習
1.3. 深度學習
1.4. 雲端與邊緣運算 -
邊緣運算硬體
2.1. 基本運算原理
2.2. 加速運算晶片
2.3. 開發板類型
2.4. 硬體選用評估 -
資料集建置與標註
3.1 資料集建置
3.2 公開資料集
3.3 資料集標註
3.4 資料集迷思 -
開源模型訓練工具
4.1 AI工作流程
4.2 常見模型算法
4.3 開源訓練工具
4.4 影像分類範例 -
開源模型推論工具
5.1 邊緣推論工具簡介
5.2 OpenVINO簡介
5.3 OpenVINO多媒體處理
5.4 OpenVINO範例 -
模型優化與佈署
6.1 模型訓練優化
6.2 加速訓練方式
6.3 模型推論優化
6.4 OpenVINO優化工具 -
邊緣智慧案例實作
7.1. 影像分類
7.2. 物件偵測
7.3. 人臉辨識
7.4. 影像分割
7.5. 姿態估測
7.6. 喚醒詞辨識 (tinyML) 7.7. 運動手勢辨識 (tinyML) -
附錄(Appendix)
A. 創意專題製作與分享
C. Intel DevCloud安裝與測試
D. Google Colab進階使用
相關內容僅供教學參考,如有筆誤或不慎觸犯著作權,歡迎來信指正,將會儘速處理,謝謝!