Skip to content

Commit

Permalink
[init] re-initialize the project by update the structure
Browse files Browse the repository at this point in the history
  • Loading branch information
shendu-ht committed Apr 18, 2023
1 parent b518c01 commit 5404834
Show file tree
Hide file tree
Showing 70 changed files with 166 additions and 170 deletions.
18 changes: 18 additions & 0 deletions Applications/Ads Recommendation/Click-Through Rate/DLReview.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
## Deep Learning for Click-Through Rate Estimation

### 0. 概括

本文是一篇关于深度学习在CTR预估中的综述,文章介绍了CTR预估的重要性以及深度学习模型如何提高CTR预估的性能。


### 1. CTR背景

CTR预估是指通过分析用户的历史行为数据,预测用户是否会点击某个广告或者某个推荐内容。CTR预估任务的数据案例如下图所示:

<div align="center">
<img src=Figure/ClickInstance.png width=75% />
</div>

CTR预估的模型训练任务可构建为二分类问题,且损失函数如下:
$$ \mathcal{L}(x, y, \theta) = -y\cdot \log \sigma(f_{\theta}(x)) - (1-y)\cdot \log (1-\sigma(f_{\theta} (x))) $$

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ BERT是一种自监督的语言模型,通过利用大量未标注的语料库
> #### *模型架构*
> Bert模型架构是多层双向Transformer Encoder。
![Model Structure Comparison](./Figure/Bert%20Structure.png)
![Model Structure Comparison](Figure/Bert%20Structure.png)



Expand All @@ -43,7 +43,7 @@ BERT是一种自监督的语言模型,通过利用大量未标注的语料库
> 下图展示了Bert的四种微调任务,(a)和(b)是sentence-level的任务,(c)和(d)token-level的任务。
>
![Bert Fine-tuning](./Figure/Bert%20fine-tuning.png)
![Bert Fine-tuning](Figure/Bert%20fine-tuning.png)


### 2. 评估任务
Expand Down
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -55,5 +55,5 @@ $$ y(w_t) = b + Uh(w_{t-\Delta}, \cdots, w_{t+\Delta}, d) $$
其中$b\in R$和$U \in R^{d_a + d_g}$是Softmax参数,$h$计算可参见下图,先对匿名游走结果的嵌入向量$(w_{t-\Delta}, \cdots, w_{t+\Delta})$进行平均,再和图嵌入$d$进行联结。

<div align="center">
<img src=./Figure/AWE.png width=40% />
<img src=Figure/AWE.png width=40% />
</div>
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ $$\mathrm{minimize} - \log Pr(\begin{Bmatrix} v_{i-w}, \cdots, v_{i-1}, v_{i+1},
### 4. DeepWalk方法详情

<div align="center">
<img src=./Figure/OverviewDeepWalk.png width=60% />
<img src=Figure/OverviewDeepWalk.png width=60% />
</div>

DeepWalk的整体流程如上图所示,其伪代码如下图所示。
Expand All @@ -50,11 +50,11 @@ $$\mathrm{minimize} - \log Pr(\begin{Bmatrix} v_{i-w}, \cdots, v_{i-1}, v_{i+1},
其中$\Psi(b_l)\in \mathbb{R}^{d}$是节点$b_l$的父节点表征,$\Phi$和$\Psi$为待优化的模型参数。

<div align="center">
<img src=./Figure/DeepWalk.png width=40% />
<img src=Figure/DeepWalk.png width=40% />
</div>

<div align="center">
<img src=./Figure/SkipGram.png width=40% />
<img src=Figure/SkipGram.png width=40% />
</div>


Expand All @@ -76,5 +76,5 @@ $$\mathrm{minimize} - \log Pr(\begin{Bmatrix} v_{i-w}, \cdots, v_{i-1}, v_{i+1},
评估结果如下图所示

<div align="center">
<img src=./Figure/DeepWalkEval.png width=40% />
<img src=Figure/DeepWalkEval.png width=40% />
</div>
Original file line number Diff line number Diff line change
Expand Up @@ -44,5 +44,5 @@
### 3. 评估

<div align="center">
<img src=./Figure/LINEval.png width=40% />
<img src=Graph width=40% />
</div>
Original file line number Diff line number Diff line change
Expand Up @@ -42,17 +42,17 @@ $$ f^{\prime} L_{sym} f = \frac{1}{2} \sum_{i, j=1}^{n} w_{i, j} \left( \frac{f_
$$ s(x_i, x_j) = e^{-\frac{|x_i - x_j|^2}{2 \sigma^2}} $$

<div align="center">
<img src=./Figure/SpectralClusteringU.png width=40% />
<img src=Graph width=40% />
</div>

归一化的谱聚类方法如下:

<div align="center">
<img src=./Figure/SpectralClusteringN.png width=40% />
<img src=Graph width=40% />
</div>

<div align="center">
<img src=./Figure/SpectralClusteringN2.png width=40% />
<img src=Graph width=40% />
</div>


Expand Down
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -25,5 +25,5 @@ $$ S^{\prime}_{(h, l, t)} = \left\lbrace (h^{\prime}, l, t) | h^{\prime} \in E
在优化过程中,实体嵌入向量的L2正则约束为1,关系嵌入向量没有约束。详细地优化过程如下图所示。

<div align="center">
<img src=./Figure/TransE.png width=40% />
<img src=Graph width=40% />
</div>
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ TransE难以处理自映射、一对多、多对多等不同属性的关系,
前人方法和TransH的Score函数和参数量级对比结果如下图所示。

<div align="center">
<img src=./Figure/TransHmodels.png width=40% />
<img src=Graph width=40% />
</div>


Expand All @@ -21,7 +21,7 @@ TransE难以处理自映射、一对多、多对多等不同属性的关系,
记$\Delta$是存在关系的三元组集合,$(h, r, t)\in \Delta$表示三元组关系是存在的。

<div align="center">
<img src=./Figure/TransH-TransE.png width=40% />
<img src=Graph width=40% />
</div>


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
大小为$k$的graphlet可表示为$\mathcal{G} = \begin{Bmatrix} graphlet(1), \cdots, graphlet(N_k) \end{Bmatrix}$,大小为4的所有Graphlet如下图所示。

<div align="center">
<img src=./Figure/Graphlet.png width=40% />
<img src=Figure/Graphlet.png width=40% />
</div>

图G的k谱$f_G$是图中大小为$k$的graphlet的子图数量:$f_G (i) = \mathrm{number}(graphlet(i) \subseteq G)$,归一化后的向量为:
Expand Down
File renamed without changes.
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
<div align="center">
<img src=./Figure/optimizer.gif width=60% />
<img src=Figure/optimizer.gif width=60% />
</div>


Expand Down
File renamed without changes.
Loading

0 comments on commit 5404834

Please sign in to comment.