Skip to content

OwlCodR/stars-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

38 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌠 Variable stars detection using ML algorithms

This repository contains university project. The goal of this project is to create a program which helps people to automatically classificate variable stars or differ other objects to variable stars using machine learning algorithms.

πŸš€ Results

  • In progress

πŸ“¦ Experience

  • Python
    • pandas
    • psycopg2 (Postgres SQL)
    • csv
    • astropy
    • astroquery
  • Subject area
    • Basics of astronomy
    • Variable stars classification
    • Coordinate systems and units
    • Etc

Info about database

We use database which is the result of crossing APASS DR9 and GALEX AIS GR6+7 by X-Macth.

Fields that we will probably use to classificate type of variable star or object in the space.

Field Description Example
FUVmag [10.6/23.8] GALEX FUV calibrated magnitude in AB system 21.8688
NUVmag [-10.5/4.4] NUV Kron-like elliptical aperture magnitude 18.1355
nobs [2/387] Number of observed nights 8
mobs [2/3476] Number of images for this field, usually nobs*5 40
Vmag [5.5/27.4] Johnson V-band magnitude. Optical V band between 500 and 600 nm 13.551
e_Vmag [0/7] Vmag uncertainty 0.066
Bmag [5.4/27.3] Johnson B-band magnitude. Optical B band between 400 and 500 nm 14.209
e_Bmag [0/10] Bmag uncertainty 0.075
gpmag g'mag [5.9/24.2] g'-band AB magnitude, Sloan filter. Optical B band between 400 and 500 nm 13.851
rpmag r'mag [5.1/23.9] r'-band AB magnitude, Sloan filter. Optical R band between 600 and 750 nm 13.376
ipmag r'mag [4.2/29.1] i'-band AB magnitude, Sloan filter. Optical I band between 750 and 1000 nm 13.208
otype Object type from Simbad EB*
starType Variability Type, as in GCVS catalog Variability type (see details of VSX type list) EW
min Magnitude at minimum, or amplitude 0.10999999940395355
max Magnitude at maximum, or amplitude 13.399999618530273
Period Period of the variable in days 0.290016

πŸ“Š Metrics of classifiers

Train dataset:  (6683, 8) (6683,)
Test dataset:  (1671, 8) (1671,)
Nearest Neighbors
              precision    recall  f1-score   support

           0       0.95      0.97      0.96       818
           1       0.97      0.95      0.96       853

    accuracy                           0.96      1671
   macro avg       0.96      0.96      0.96      1671
weighted avg       0.96      0.96      0.96      1671

Linear SVM
              precision    recall  f1-score   support

           0       0.94      0.97      0.96       811
           1       0.97      0.94      0.96       860

    accuracy                           0.96      1671
   macro avg       0.96      0.96      0.96      1671
weighted avg       0.96      0.96      0.96      1671

RBF SVM
              precision    recall  f1-score   support

           0       0.95      0.97      0.96       816
           1       0.97      0.95      0.96       855

    accuracy                           0.96      1671
   macro avg       0.96      0.96      0.96      1671
weighted avg       0.96      0.96      0.96      1671

Decision Tree
              precision    recall  f1-score   support

           0       0.96      0.97      0.96       828
           1       0.97      0.96      0.96       843

    accuracy                           0.96      1671
   macro avg       0.96      0.96      0.96      1671
weighted avg       0.96      0.96      0.96      1671

Random Forest
              precision    recall  f1-score   support

           0       0.95      0.97      0.96       817
           1       0.97      0.95      0.96       854

    accuracy                           0.96      1671
   macro avg       0.96      0.96      0.96      1671
weighted avg       0.96      0.96      0.96      1671

Neural Net
              precision    recall  f1-score   support

           0       0.94      0.98      0.96       801
           1       0.98      0.94      0.96       870

    accuracy                           0.96      1671
   macro avg       0.96      0.96      0.96      1671
weighted avg       0.96      0.96      0.96      1671

AdaBoost
              precision    recall  f1-score   support

           0       0.95      0.97      0.96       821
           1       0.97      0.95      0.96       850

    accuracy                           0.96      1671
   macro avg       0.96      0.96      0.96      1671
weighted avg       0.96      0.96      0.96      1671

Naive Bayes
              precision    recall  f1-score   support

           0       0.94      0.97      0.95       811
           1       0.97      0.94      0.95       860

    accuracy                           0.95      1671
   macro avg       0.95      0.95      0.95      1671
weighted avg       0.95      0.95      0.95      1671

QDA
              precision    recall  f1-score   support

           0       0.94      0.97      0.95       806
           1       0.97      0.94      0.96       865

    accuracy                           0.96      1671
   macro avg       0.96      0.96      0.96      1671
weighted avg       0.96      0.96      0.96      1671

Best accuracy: Decision Tree 0.9622980251346499

About

πŸŽ† Variable stars detection and classification using ML algorithms

Topics

Resources

Stars

Watchers

Forks

Contributors 2

  •  
  •