Skip to content

[4-5 FPS / Core m3 CPU only] [11 FPS / Core i7 CPU only] OpenVINO+DeeplabV3+LattePandaAlpha/LaptopPC. CPU / GPU / NCS. RealTime semantic-segmentaion. Python3.5+Tensorflow v1.11.0+OpenCV3.4.3+PIL

License

Notifications You must be signed in to change notification settings

PINTO0309/OpenVINO-DeeplabV3

Repository files navigation

OpenVINO-DeeplabV3

[4-5 FPS / Core m3 CPU only] [11 FPS / Core i7 CPU only]
OpenVINO+DeeplabV3+LattePandaAlpha. CPU / GPU / NCS. RealTime semantic-segmentaion. Python3.5+OpenCV3.4.3+PIL

【Caution】 It does not work on ARM architecture devices such as RaspberryPi / TX2.
【Notice】December 19, 2018 OpenVINO has supported RaspberryPi + NCS2 !!
https://software.intel.com/en-us/articles/OpenVINO-RelNotes#inpage-nav-2-2



【Japanese article / English article】
(1) Introducing Ubuntu 16.04 + OpenVINO to Latte Panda Alpha 864 (without OS included) and enjoying Semantic Segmentation with Neural Compute Stick and Neural Compute Stick 2

(2) Real-time Semantic Segmentation with CPU alone [part2] [4-5 FPS / Core m3 CPU only] [11-12 FPS / Core i7 CPU only] DeeplabV3+MobilenetV2

【Reference article / Japanese】 DeepLab vs Mask RCNN
https://jyuko49.hatenablog.com/entry/2018/11/17/145904

Results

【Result 1】 Click the image below to play Youtube video. (Core m3 + CPU only mode. 4.0FPS - 5.0FPS)

【Result 2】 Click the image below to play Youtube video. (Core m3 + CPU only mode. 4.0FPS - 5.0FPS)

【Result 3】 Click the image below to play Youtube video. (Core m3 + CPU only mode. 4.0FPS - 5.0FPS)

【Result 4】 Click the image below to play Youtube video. (Core i7 + CPU only mode. 11.0FPS - 12.0FPS)

Environment

  • LattePanda Alpha (Intel 7th Core m3-7y30) or LaptopPC (Intel 8th Core i7-8750H)
  • Ubuntu 16.04 x86_64
  • OpenVINO toolkit 2018 R4 (2018.4.420)
  • Python 3.5
  • OpenCV 3.4.3
  • PIL
  • Tensorflow v1.11.0 or Tensorflow-GPU v1.11.0 (pip install)
  • DeeplabV3 + MobilenetV2 (Pascal VOC 2012)
  • USB Camera (PlaystationEye) / Movie file (mp4)
  • 【option】 Intel Neural Compute Stick / Intel Neural Compute Stick 2 or GPU

Benchmark

https://ncsforum.movidius.com/discussion/1329/lattepanda-alpha-openvino-cpu-core-m3-vs-ncs1-vs-ncs2-performance-comparison

Usage

1. Installation of OpenVINO main unit

1.1 Download

$ cd ~/Downloads
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=18-TeUzeN34CV-QqM0rO3wpdEGODTWrBc" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=18-TeUzeN34CV-QqM0rO3wpdEGODTWrBc" -o l_openvino_toolkit_p_2018.4.420.tgz
$ tar -zxf l_openvino_toolkit_p_2018.4.420.tgz
$ rm l_openvino_toolkit_p_2018.4.420.tgz
$ cd l_openvino_toolkit_p_2018.4.420

1.2 Install basic functions

## GUI version installer
$ sudo ./install_GUI.sh
or
## CUI version installer
$ sudo ./install.sh

$ cd /opt/intel/computer_vision_sdk/install_dependencies
$ sudo -E ./install_cv_sdk_dependencies.sh
$ nano ~/.bashrc
source /opt/intel/computer_vision_sdk/bin/setupvars.sh

$ source ~/.bashrc
$ cd /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/install_prerequisites
$ sudo ./install_prerequisites.sh

1.3 Install optional features

1.3.1 【Optional execution】 Additional installation steps for the Intel® Movidius™ Neural Compute Stick v1 and Intel® Neural Compute Stick v2
$ sudo usermod -a -G users "$(whoami)"
$ cat <<EOF > 97-usbboot.rules
SUBSYSTEM=="usb", ATTRS{idProduct}=="2150", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
SUBSYSTEM=="usb", ATTRS{idProduct}=="2485", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
SUBSYSTEM=="usb", ATTRS{idProduct}=="f63b", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
EOF

$ sudo cp 97-usbboot.rules /etc/udev/rules.d/
$ sudo udevadm control --reload-rules
$ sudo udevadm trigger
$ cd /opt/intel/common/mdf/lib64
$ sudo mv igfxcmrt64.so igfxcmrt64.so.org
$ sudo ln -s libigfxcmrt64.so igfxcmrt64.so
$ cd /opt/intel/mediasdk/lib64
$ sudo mv libmfxhw64.so.1 libmfxhw64.so.1.org
$ sudo mv libmfx.so.1 libmfx.so.1.org
$ sudo mv libva-glx.so.2 libva-glx.so.2.org
$ sudo mv libva.so.2 libva.so.2.org
$ sudo mv libigdgmm.so.1 libigdgmm.so.1.org
$ sudo mv libva-drm.so.2 libva-drm.so.2.org
$ sudo mv libva-x11.so.2 libva-x11.so.2.org
$ sudo ln -s libmfxhw64.so.1.28 libmfxhw64.so.1
$ sudo ln -s libmfx.so.1.28 libmfx.so.1
$ sudo ln -s libva-glx.so.2.300.0 libva-glx.so.2
$ sudo ln -s libva.so.2.300.0 libva.so.2
$ sudo ln -s libigdgmm.so.1.0.0 libigdgmm.so.1
$ sudo ln -s libva-drm.so.2.300.0 libva-drm.so.2
$ sudo ln -s libva-x11.so.2.300.0 libva-x11.so.2
$ sudo ldconfig
$ rm 97-usbboot.rules
1.3.2 【Optional execution】 Additional installation steps for processor graphics (GPU)
$ cd /opt/intel/computer_vision_sdk/install_dependencies/
$ sudo -E su
$ uname -r
4.15.0-42-generic #<--- display kernel version sample

### Execute only when the kernel version is older than 4.14
$ ./install_4_14_kernel.sh

$ ./install_NEO_OCL_driver.sh
$ sudo reboot

2. Downgrade to stable OpenCV

Since OpenCV 4.0.0-pre introduced by default had bug in Gstreamer and it did not work properly, we will reinstall OpenCV 3.4.3 on our own.

$ sudo -H pip3 install opencv-python==3.4.3.18
$ nano ~/.bashrc
export PYTHONPATH=/usr/local/lib/python3.5/dist-packages/cv2:$PYTHONPATH

$ source ~/.bashrc

3. Upgrade to Tensorflow v1.11.0

Upgrade to old version Tensorflow v1.9.0, introduced by default, to Tensorflow v1.11.0, as subsequent model optimizer processing will fail.

$ sudo -H pip3 install pip --upgrade

$ python3 -c 'import tensorflow as tf; print(tf.__version__)'
1.9.0 #<--- display Tensorflow version sample

$ sudo -H pip3 install tensorflow==1.11.0 --upgrade
or
$ sudo -H pip3 install tensorflow-gpu==1.11.0 --upgrade

4. Settings for offloading custom layer behavior to Tensorflow

$ sudo apt-get install -y git pkg-config zip g++ zlib1g-dev unzip
$ cd ~
$ wget https://github.com/bazelbuild/bazel/releases/download/0.18.1/bazel-0.18.1-installer-linux-x86_64.sh
$ sudo chmod +x bazel-0.18.1-installer-linux-x86_64.sh
$ ./bazel-0.18.1-installer-linux-x86_64.sh --user
$ echo 'export PATH=$PATH:$HOME/bin' >> ~/.bashrc
$ source ~/.bashrc
$ cd /opt
$ sudo git clone -b v1.11.0 https://github.com/tensorflow/tensorflow.git
$ cd tensorflow
$ sudo git checkout -b v1.11.0
$ echo 'export TF_ROOT_DIR=/opt/tensorflow' >> ~/.bashrc
$ source ~/.bashrc
$ sudo nano /opt/intel/computer_vision_sdk/bin/setupvars.sh

#Before
INSTALLDIR=/opt/intel//computer_vision_sdk_2018.4.420
↓
#After
INSTALLDIR=/opt/intel/computer_vision_sdk_2018.4.420

$ source /opt/intel/computer_vision_sdk/bin/setupvars.sh
$ sudo nano /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/tf_call_ie_layer/build.sh

#Before
bazel build --config=monolithic //tensorflow/cc/inference_engine_layer:libtensorflow_call_layer.so
↓
#After
sudo -H $HOME/bin/bazel build --config monolithic //tensorflow/cc/inference_engine_layer:libtensorflow_call_layer.so
or
sudo -H $HOME/bin/bazel --host_jvm_args=-Xmx512m build --config monolithic --local_resources 1024.0,0.5,0.5 //tensorflow/cc/inference_engine_layer:libtensorflow_call_layer.so

$ sudo -E /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/tf_call_ie_layer/build.sh

$ su -
$ cp /opt/tensorflow/bazel-bin/tensorflow/cc/inference_engine_layer/libtensorflow_call_layer.so /usr/local/lib
$ exit
$ nano ~/.bashrc
export PYTHONPATH=$PYTHONPATH:/usr/local/lib

$ source ~/.bashrc
$ sudo ldconfig

5. 【Optional execution】 Build sample programs and CPU extension

$ cd /opt/intel/computer_vision_sdk/deployment_tools/inference_engine/samples
$ sudo ./build_samples.sh

### The prebuilt binary is saved in the following path
### ~/inference_engine_samples_build/intel64/Release/

6. 【Optional execution】【Example】 Conversion of Tensorflow-DeeplabV3 model to lr format

6-1. Pascal VOC

$ cd ~
$ mkdir model
$ wget http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz
$ tar -zxvf deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz
$ cp deeplabv3_mnv2_pascal_train_aug/frozen_inference_graph.pb model
$ sudo python3 /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py \
--input_model pbmodels/PascalVOC/frozen_inference_graph.pb \
--input 0:MobilenetV2/Conv/Conv2D \
--output ArgMax \
--input_shape [1,513,513,3] \
--output_dir lrmodels/PascalVOC/FP32

6-2. MS-COCO cityscapes

$ wget http://download.tensorflow.org/models/deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz
$ tar -zxvf deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz

7. Execution (The default is "USB Camera mode")

$ cd ~
$ git clone https://github.com/PINTO0309/OpenVINO-DeeplabV3.git
$ cd OpenVINO-DeeplabV3
$ python3 openvino_deeplabv3_test.py

How to install Bazel (version 0.17.2, x86_64 only)

1. Bazel introduction command

$ cd ~
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1dvR3pdM6vtkTWqeR-DpgVUoDV0EYWil5" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1dvR3pdM6vtkTWqeR-DpgVUoDV0EYWil5" -o bazel
$ sudo cp ./bazel /usr/local/bin
$ rm ./bazel

2. Supplementary information

https://github.com/PINTO0309/Bazel_bin.git

How to check the graph structure of a ".pb" file [Part.1]

Simple structure analysis.

1. Build and run graph structure analysis program

$ cd ~
$ git clone -b v1.11.0 https://github.com/tensorflow/tensorflow.git
$ cd tensorflow
$ git checkout -b v1.11.0
$ bazel build tensorflow/tools/graph_transforms:summarize_graph
$ bazel-bin/tensorflow/tools/graph_transforms/summarize_graph --in_graph=xxxx.pb

2. Sample of display result

Found 1 possible inputs: (name=ImageTensor, type=uint8(4), shape=[1,?,?,3]) 
No variables spotted.
Found 1 possible outputs: (name=SemanticPredictions, op=Slice) 
Found 2146325 (2.15M) const parameters, 0 (0) variable parameters, and 4 control_edges
Op types used: 374 Const, 357 Identity, 54 FusedBatchNorm, 38 Conv2D, 34 Relu6, \
17 DepthwiseConv2dNative, 13 Add, 10 StridedSlice, 10 BatchToSpaceND, 10 \
SpaceToBatchND, 8 Sub, 5 Pack, 4 GreaterEqual, 4 Assert, 4 Shape, 4 ResizeBilinear, \
3 Cast, 3 Relu, 2 ExpandDims, 2 Squeeze, 2 Maximum, 2 Mul, 1 Slice, 1 LogicalAnd, \
1 Reshape, 1 Placeholder, 1 Pad, 1 Equal, 1 ConcatV2, 1 BiasAdd, 1 AvgPool, 1 ArgMax
To use with tensorflow/tools/benchmark:benchmark_model try these arguments:
bazel run tensorflow/tools/benchmark:benchmark_model -- \
--graph=xxxx.pb \
--show_flops \
--input_layer=ImageTensor \
--input_layer_type=uint8 \
--input_layer_shape=1,-1,-1,3 \
--output_layer=SemanticPredictions

How to check the graph structure of a ".pb" file [Part.2]

Convert to text format.

1. Run graph structure analysis program

$ python3 tfconverter.py
### ".pbtxt" in ProtocolBuffer format is output.
### The size of the generated text file is huge.

How to check the graph structure of a ".pb" file [Part.3]

Use Tensorboard.

1. Build Tensorboard

$ cd ~
$ git clone -b v1.11.0 https://github.com/tensorflow/tensorflow.git
$ cd tensorflow
$ git checkout -b v1.11.0
$ bazel build tensorflow/tensorboard:tensorboard

2. Run log output program for Tensorboard

import tensorflow as tf
from tensorflow.python.platform import gfile

with tf.Session() as sess:
    model_filename ="xxxx.pb"
    with gfile.FastGFile(model_filename, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        g_in = tf.import_graph_def(graph_def)

    LOGDIR="path/to/logs"
    train_writer = tf.summary.FileWriter(LOGDIR)
    train_writer.add_graph(sess.graph)

3. Starting Tensorboard

$ bazel-bin/tensorflow/tensorboard/tensorboard --logdir=path/to/logs

4. Display of Tensorboard

Access http://localhost:6006 from the browser.

Reference article, thanks

https://github.com/FionaZZ92/OpenVINO.git
https://medium.com/@oleksandrsavsunenko/optimizing-neural-networks-for-production-with-intels-openvino-a7ee3a6883d
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
https://blogs.yahoo.co.jp/verification_engineer/71450155.html

About

[4-5 FPS / Core m3 CPU only] [11 FPS / Core i7 CPU only] OpenVINO+DeeplabV3+LattePandaAlpha/LaptopPC. CPU / GPU / NCS. RealTime semantic-segmentaion. Python3.5+Tensorflow v1.11.0+OpenCV3.4.3+PIL

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages