Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions fastdeploy/spec_decode/mtp.py
Original file line number Diff line number Diff line change
Expand Up @@ -708,7 +708,7 @@ def insert_prefill_inputs(self, req_dicts: List[Request], num_running_requests:
self.model_inputs["not_need_stop"][0] = True
self.model_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer

def _initialize_forward_meta(self, step_use_cudagraph: bool = False):
def _initialize_forward_meta(self, step_use_cudagraph: bool = False, is_dummy_run: bool = False, substep: int = 0):
"""
Initialize forward meta and attention meta data
"""
Expand Down Expand Up @@ -744,7 +744,12 @@ def _initialize_forward_meta(self, step_use_cudagraph: bool = False):
for attn_backend in self.attn_backends:
attn_backend.init_attention_metadata(self.forward_meta)

self.forward_meta.step_use_cudagraph = step_use_cudagraph and self.draft_model_use_cudagraph
# Notes(liuzichang):
# 1. CUDA Graph capture sizes must be recorded in descending order (large → small).
# 2. In multi-step execution, only the first step should be captured.
self.forward_meta.step_use_cudagraph = (
step_use_cudagraph and self.draft_model_use_cudagraph and not (substep > 0 and is_dummy_run)
)

def _initialize_forward_meta_xpu(self):

Expand Down Expand Up @@ -922,7 +927,9 @@ def _propose_cuda(self, step_use_cudagraph: bool = False, is_dummy_run: bool = F
self.model_inputs["output_padding_offset"].copy_(output_padding_offset, False)

# Initialize forward meta data
self._initialize_forward_meta(step_use_cudagraph=step_use_cudagraph)
self._initialize_forward_meta(
step_use_cudagraph=step_use_cudagraph, is_dummy_run=is_dummy_run, substep=substep
)
self.forward_meta.batch_id_per_token.copy_(batch_id_per_token, False)

# Padding inputs for cuda graph
Expand All @@ -947,9 +954,10 @@ def _propose_cuda(self, step_use_cudagraph: bool = False, is_dummy_run: bool = F
top_p_normalized_logprobs=self.model_inputs["top_p_normalized_logprobs"],
share_inputs=self.model_inputs,
)

# Note(liuzichang):
# paddle.clone would raise error 700 in cudaGraph mode
if self.num_model_steps > 1:
self.last_seq_lens_this_time = paddle.clone(self.model_inputs["seq_lens_this_time"])
self.last_seq_lens_this_time.copy_(self.model_inputs["seq_lens_this_time"], False)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这是个新增的模型输入吗

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里不是新增的,多步下一直有,如果用 clone 会奇怪和 cudagraph 耦合


model_output = self.model(
ids_remove_padding=self.model_inputs["ids_remove_padding"],
Expand Down
43 changes: 2 additions & 41 deletions fastdeploy/worker/gpu_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -2155,51 +2155,12 @@ def capture_model(self) -> None:
),
batch_size=int(capture_size / (self.speculative_config.num_speculative_tokens + 1)),
in_capturing=True,
expected_decode_len=self.speculative_config.num_speculative_tokens,
expected_decode_len=self.speculative_config.num_speculative_tokens * 2 + 1,
accept_all_drafts=True,
)
logger.info(
f"Warm up the Target model with the num_tokens:{capture_size}, expected_decode_len:{self.speculative_config.num_speculative_tokens}"
f"Warm up the model with the num_tokens:{capture_size}, expected_decode_len:{self.speculative_config.num_speculative_tokens}"
)
if self.graph_opt_config.draft_model_use_cudagraph:
# Capture Draft Model without bsz 1
# NOTE(liujundong): expected_decode_len = 1, will affect mtp capture in cudagraph
for batch_size in sorted(capture_sizes, reverse=True):
if batch_size == 1:
logger.info("Skip token_num = 1, when capture Draft model for mtp")
else:
assert batch_size % 2 == 0
self._dummy_run(
num_tokens=(
self.scheduler_config.max_num_seqs
if self.scheduler_config.splitwise_role == "decode"
else self.scheduler_config.max_num_batched_tokens
),
batch_size=int(batch_size / 2),
in_capturing=True,
expected_decode_len=3,
accept_all_drafts=True,
)
logger.info(
f"Warm up the Draft model with the num_tokens:{batch_size}, expected_decode_len:{3}"
)
# Capture Draft Model with bsz 1
if 1 in capture_sizes:
self._dummy_run(
num_tokens=(
self.scheduler_config.max_num_seqs
if self.scheduler_config.splitwise_role == "decode"
else self.scheduler_config.max_num_batched_tokens
),
batch_size=int(1),
in_capturing=True,
expected_decode_len=3,
accept_all_drafts=False,
reject_all_drafts=True,
)
logger.info(
f"Warm up the Draft model with the num_tokens:{batch_size}, expected_decode_len:{3}"
)
else:
for batch_size in sorted(capture_sizes, reverse=True):
self._dummy_run(
Expand Down
Loading