Skip to content

A hierarchical deep learning framework for ncRNA-protein interaction prediction.

License

Notifications You must be signed in to change notification settings

Pengeace/RPITER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RPITER

A hierarchical deep learning model for predicting ncRNA-protein interaction.

The sample, data and result directories contain model codes, tested data sets and generated results, respectively. The depended python packages are listed in requirements.txt. The package versions should be followed by users in their environments to achieve the supposed performance.

How to run

The program is in Python 3.6 using Keras and Tensorflow backends. Use the below bash command to run RPITER.

    python rpiter.py -d dataset

The parameter of dataset could be RPI369, RPI488, RPI1807, RPI2241 or NPInter. Then, RPITER will perform 5-fold cross validation on the specific dataset.

Five RPI datasets

The widely used RPI benchmark datasets are organized in the data directory.

Dataset #Positive pairs #Negative pairs RNAs Proteins Reference
RPI369 369 0 332 338 [1]
RPI488 243 245 25 247 [2]
RPI1807 1807 1436 1078 3131 [3]
RPI2241 2241 0 841 2042 [1]
NPInter 10412 0 4636 449 [4]

Help

For any questions, feel free to contact me by chengpengeace@gmail.com or start an issue instead.

[1] Muppirala, U.K.; Honavar, V.G.; Dobbs, D. Predicting RNA-Protein Interactions Using Only Sequence Information. Bmc Bioinformatics 2011, 12. doi:Artn 489 10.1186/1471-2105-12-489.

[2] Pan, X.Y.; Fan, Y.X.; Yan, J.C.; Shen, H.B. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. Bmc Genomics 2016, 17. doi:ARTN 582 10.1186/s12864-016-2931-8.

[3] Suresh, V.; Liu, L.; Adjeroh, D.; Zhou, X.B. RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information. Nucleic Acids Research 2015, 43, 1370–1379. doi:10.1093/nar/gkv020.

[4] Yuan, J.;Wu,W.; Xie, C.Y.; Zhao, G.G.; Zhao, Y.; Chen, R.S. NPInter v2.0: an updated database of ncRNA interactions. Nucleic Acids Research 2014, 42, D104–D108. doi:10.1093/nar/gkt1057.

About

A hierarchical deep learning framework for ncRNA-protein interaction prediction.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published