We provide the source codes here for users who have basic knowledge in R programming. There are two required R packages for running our code, Rcpp
and RcppArmadillo
, because the main function DiscrimOD
is written in C++. Nonetheless, users are NOT required to be familiar with C/C++ programming.
For more information of optimal design requirements and computational details, please refer to our published paper:
- Chen, R. B., Chen, P. Y., Hsu, C. L., and Wong, W. K. (2020). Hybrid algorithms for generating optimal designs for discriminating multiple nonlinear models under various error distributional assumptions. PloS one, 15(10), e0239864.
Please install the latest development version from github with the following R codes.
install.packages("devtools")
devtools::install_github("PingYangChen/DiscrimOD")
# Atkinson and Fedorov (1975a): T-optimal
# Two R functions of competing models are given by
af1 <- function(x, p) p[1] + p[2]*exp(x) + p[3]*exp(-x)
af2 <- function(x, p) p[1] + p[2]*x + p[3]*x^2
# Set the model information
# The nominla value in 'm1' is 4.5, -1.5, -2.0
# For 'af2', we set the parameter space to be [-10, 10]^3 and
# the initial guess (for LBFGS) of the rival model parameter is zero vector
AF_para_af1 <- c(4.5, -1.5, -2)
af_info_12 <- list(
# The first list should be the true model and the specified nominal values
list(model = af1, para = AF_para_af1),
# Then the rival models are listed accordingly. We also need to specify the model space.
list(model = af2, paraLower = rep(-10, 3), paraUpper = rep(10, 3))
)
# Define the R function for the distance measure in T-optimal criterion
# xt is the mean values of the true model
# xr is the mean values of the rival model
sq_diff <- function(xt, xr) (xt - xr)^2
# Initialize PSO and BFGS options
PSO_INFO <- getPSOInfo(nSwarm = 32, maxIter = 100)
LBFGS_INFO <- getLBFGSInfo(LBFGS_RETRY = 2)
# Find T-optimal design for models af1 and af2
af_res_12 <- DiscrimOD(MODEL_INFO = af_info_12, DISTANCE = sq_diff,
nSupp = 4, dsLower = -1, dsUpper = 1, crit_type = "pair_fixed_true",
PSO_INFO = PSO_INFO, LBFGS_INFO = LBFGS_INFO, seed = NULL, verbose = FALSE)
round(af_res_12$BESTDESIGN, 3) # The resulting design
af_res_12$BESTVAL # The T-optimal criterion value
af_res_12$CPUTIME # CPU time
# Test optimality by equivalence theorem
af_eqv_12 <- equivalence(ngrid = 100, PSO_RESULT = af_res_12, MODEL_INFO = af_info_12,
DISTANCE = sq_diff, dsLower = -1, dsUpper = 1, crit_type = "pair_fixed_true",
PSO_INFO = PSO_INFO, LBFGS_INFO = LBFGS_INFO)
# Draw the directional derivative curve
plot(af_eqv_12$Grid_1, af_eqv_12$DirDeriv, type = "l", col = "blue",
main = "af_res_12", xlab = "x", ylab = "Directional Derivative"); abline(h = 0)
points(af_res_12$BESTDESIGN[,1], rep(0, nrow(af_res_12$BESTDESIGN)), pch = 16)
# Following above, we add the 3rd model in Atkinson and Fedorov (1975b)
af3 <- function(x, p) p[1] + p[2]*sin(0.5*pi*x) + p[3]*cos(0.5*pi*x) + p[4]*sin(pi*x)
af_info_13 <- list(
list(model = af1, para = AF_para_af1),
list(model = af3, paraLower = rep(-10, 4), paraUpper = rep(10, 4))
)
# Find another T-optimal design for models af1 and af3
af_res_13 <- DiscrimOD(MODEL_INFO = af_info_13, DISTANCE = sq_diff,
nSupp = 5, dsLower = -1.0, dsUpper = 1.0, crit_type = "pair_fixed_true",
PSO_INFO = PSO_INFO, LBFGS_INFO = LBFGS_INFO, seed = NULL, verbose = FALSE)
# Re-organize model list for finding the max-min T-optimal design
af_info_maxmin <- list(af_info_12[[1]], af_info_12[[2]], af_info_13[[2]])
# Define the vector of optimal criterion values for efficiency computations
af_vals_pair <- c(af_res_12$BESTVAL, af_res_13$BESTVAL)
# Search for max-min T-optimal design for discriminating af1, af2 and af3
af_res_maxmin <- DiscrimOD(MODEL_INFO = af_info_maxmin, DISTANCE = sq_diff,
nSupp = 5, dsLower = -1, dsUpper = 1, crit_type = "maxmin_fixed_true",
MaxMinStdVals = af_vals_pair, PSO_INFO = PSO_INFO, LBFGS_INFO = LBFGS_INFO,
seed = NULL, verbose = FALSE)
round(af_res_maxmin$BESTDESIGN, 3) # The resulting design
af_res_maxmin$BESTVAL # The T-optimal criterion value
af_res_maxmin$CPUTIME # CPU time
# Test optimality by equivalence theorem
af_eqv_maxmin <- equivalence(ngrid = 100, PSO_RESULT = af_res_maxmin,
MODEL_INFO = af_info_maxmin, DISTANCE = sq_diff, dsLower = -1, dsUpper = 1,
crit_type = "maxmin_fixed_true", MaxMinStdVals = af_vals_pair,
PSO_INFO = PSO_INFO, LBFGS_INFO = LBFGS_INFO)
af_eqv_maxmin$alpha # The weight of efficiency values
# Draw the directional derivative curve
plot(af_eqv_maxmin$Grid_1, af_eqv_maxmin$DirDeriv, type = "l", col = "blue",
main = "af_res_maxmin", xlab = "x", ylab = "Directional Derivative"); abline(h = 0)
points(af_res_maxmin$BESTDESIGN[,1], rep(0, nrow(af_res_maxmin$BESTDESIGN)), pch = 16)
# Not Run
# For other distance measure, here are a few
# Heteroscedastic Normal model
# heter_norm <- function(xt, xr) {
# var_t <- xt^2
# var_r <- xr^2
# (var_t + (xt - xr)^2)/var_r - log(var_t/var_r)
# }
# Logistic regression model
# logit_diff <- function(xt, xr) {
# exp_t <- exp(xt)
# exp_r <- exp(xr)
# mu_t <- exp_t/(1 + exp_t)
# mu_r <- exp_r/(1 + exp_r)
# mu_t*(log(mu_t) - log(mu_r)) + (1 - mu_t)*(log(1.0 - mu_t) - log(1.0 - mu_r))
# }
# Gamma regression model
# gamma_diff <- function(xt, xr) log(xr/xt) + (xt - xr)/xr
If you encounter a bug, please file a reproducible example on github.