Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion keras2c/layer2c.py
Original file line number Diff line number Diff line change
Expand Up @@ -355,7 +355,7 @@ def _write_layer_AdvancedActivation(self, layer, inputs, outputs, i):
if is_model_input:
inp = inputs + '->'
else:
inp = inputs + '.'
inp = inputs[1:] + '.' #remove & prefix that is added to output_layers to pass tensor by reference

if layer_type(layer) == 'LeakyReLU':
self.layers += 'k2c_LeakyReLU(' + inp + 'array,' + \
Expand Down
10 changes: 9 additions & 1 deletion keras2c/weights2c.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,9 +118,17 @@ def write_weights(self, verbose=True):
- **static_vars** (*str*): code fora C struct containing static variables
(eg, states of a stateful RNN)
"""
if verbose:
print(__class__.__name__+"."+__name__)

for layer in self.model.layers:
method = getattr(self, '_write_weights_' + layer_type(layer))
method(layer)
if(verbose):
print("")
print(__class__.__name__+"."+__name__+" : layer : "+layer.name+" : "+method.__name__)
print("Stack: " + str(self.stack_vars))
print("Malloc: " + str(self.malloc_vars))
return self.stack_vars, self.malloc_vars, self._write_static_vars()

def _write_static_vars(self):
Expand Down Expand Up @@ -647,7 +655,7 @@ def _write_weights_LeakyReLU(self, layer):

def _write_weights_ThresholdedReLU(self, layer):
theta = layer.get_config()['theta']
self.stack_vars = 'float ' + layer.name + \
self.stack_vars += 'float ' + layer.name + \
'_theta = ' + str(theta) + '; \n'
self.stack_vars += '\n\n'

Expand Down
22 changes: 22 additions & 0 deletions tests/test_advanced_activation_layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,3 +82,25 @@ def test_ReLU(self):
keras2c_main.k2c(model, name)
rcode = build_and_run(name)
self.assertEqual(rcode, 0)

def test_AdvancedActivationLayers_NonInputLayer(self):
inshp = (9, 7, 6, 3)
alpha = 0.5
theta = 0.3
max_value = 1.0
negative_slope = 1.0
threshold = 0.3
input_layer = keras.layers.Input(inshp)
first = keras.layers.LeakyReLU(alpha=0.3)(input_layer)
middle1 = keras.layers.LeakyReLU(alpha=alpha)(first)
middle2 = keras.layers.PReLU(alpha_initializer='glorot_uniform')(middle1)
middle3 = keras.layers.ELU(alpha=alpha)(middle2)
middle4 = keras.layers.ThresholdedReLU(theta=theta)(middle3)
output_layer = keras.layers.ReLU(max_value=max_value,
negative_slope=negative_slope,
threshold=threshold)(middle4)
model = keras.models.Model(inputs=input_layer, outputs=output_layer)
name = 'test___AdvancedActivationLayers_NonInputLayers' + str(int(time.time()))
keras2c_main.k2c(model, name)
rcode = build_and_run(name)
self.assertEqual(rcode, 0)