Table of Contents
This repository contains a comprehensive pipeline for single-cell RNA sequencing (scRNA-seq) analysis using R and Seurat. The workflow covers:
- Quality control
- Clustering
- Cell type annotation
- Trajectory analysis
- Differential expression
- Enrichment analysis
| Folder | Description |
|---|---|
code/ |
R scripts for each analysis step |
figure/ |
Output figures and plots |
| Script | Purpose |
|---|---|
scRNA_run.R |
Main pipeline for preprocessing & clustering |
marker_analysis.R |
Marker gene identification & visualization |
cell_annotation.R |
Automated cell type annotation |
trajectory_analysis.R |
Trajectory & pseudotime analysis |
differential_expression.R |
Differential expression analysis |
enrichment_analysis.R |
Gene set enrichment & GO analysis |
- Install required R packages:
- All required packages are listed in
requirements.txt. - You can install them manually or use the following R commands:
pkgs <- readLines("requirements.txt") install.packages(pkgs[!pkgs %in% c("SingleR", "celldex", "monocle3", "clusterProfiler", "org.Hs.eg.db", "enrichplot", "msigdbr", "BiocManager")]) if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install(pkgs[pkgs %in% c("SingleR", "celldex", "monocle3", "clusterProfiler", "org.Hs.eg.db", "enrichplot", "msigdbr")])
- Run scripts in order as described above.
- Output files (
.csv,.pdf, plots) are saved in the respective folders.
- Cluster markers
- Cell type annotations
- Trajectory plots
- Differential expression results
- Enrichment analysis tables and figures
This project is licensed under the MIT License.
Prokash21