Training RBMs using MCLV
You will need Anaconda Create the working directory and navigate into it
unzip MCLV.zip
You'll see the following folder structure
LICENSE MCLV.zip py README.MD results
Creating the required conda environment
conda create -n mclv_env python=3.6 pip
source activate mclv_env
pip install --upgrade pip
pip install numpy
pip install pandas
pip install scipy
pip install matplotlib
pip install sklearn
pip install seaborn
For pytorch please refer to http://pytorch.org/ For our system we did:
pip install http://download.pytorch.org/whl/cu80/torch-0.2.0.post3-cp36-cp36m-manylinux1_x86_64.whl
pip install torchvision
source activate mclv_env
To display options
python3 py/main.py -h
To Setup Data(Requires Tensorflow or email us for the processed dataset if you can't install tribeflow):
python3 py/setup_data.py -b `pwd`/
For PCD Results
python3 py/main.py -b `pwd`/ -n 1 --method PCD -cdk 10 -tot 100 --plateau 10 --hidden 32 --final-likelihood --filename h32pcd1_3
For CD Results
python3 py/main.py -b `pwd`/ -n 1 --method CD -cdk 10 -tot 100 --plateau 10 --hidden 32 --final-likelihood --filename h32pcd1_3
For MCLV Results
python3 py/main.py -b `pwd`/ -n 1 --method MCLV -mclvk 10 -cdk 10 -wm 15 -tot 100 --plateau 10 --hidden 32 --final-likelihood --filename h32pcd1_3
You'll need a GPU with at least 8GB free memory, if not use the GPU-LIMIT to tune the parallelism for the likelihood computation. We didn't implement bloom filters at the present but used python sets instead.