[[TOC]]
This project is used to assess the systematics associated to q2 smearing.
Make a virtual environment like:
mamba create -n q2_systematics root=6.28 python=3.9In order to get the fits to the
get_q2_tables -v v1 -t Hlt2RD_BuToKpEE_MVA -y 2024 -x nom -b 0 -B 0 -k sim
get_q2_tables -v v1 -t Hlt2RD_BuToKpEE_MVA -y 2024 -x nom -b 0 -B 0 -k datthis will fit for a given:
- Trigger
- Year
- Statistical fluctuation
- Brem category
- Block of data
- MC or actual data
The fit needs to be done for MC and THEN data, in order to fix the tails
This is done with:
from rx_q2.q2smear_corrector import Q2SmearCorrector
obj = Q2SmearCorrector()
smeared_mass = obj.get_mass(nbrem=nbrem, block=block, jpsi_mass_reco=original_mass)This will smear the mass for a given block and brem category. The object should be reused for all the candidates and declared only once.
The script collecting all the numbers should be run with:
dump_q2_ratios -v v2 -p rk_eefor instance.