-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b147ab5
commit 299f3b2
Showing
1 changed file
with
197 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "20424303", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"\n", | ||
"def viterbi_algorithm(S, Pi, E, P, Y):\n", | ||
" K = len(S) # Length of state space will give K\n", | ||
" T = len(Y) # Length of observation sequence will give T\n", | ||
" \n", | ||
" # Initialize matrices for Viterbi probabilities and paths\n", | ||
" viterbi_prob = np.zeros((K, T))\n", | ||
" viterbi_path = np.zeros((K, T))\n", | ||
" \n", | ||
" # Part I: Initialization\n", | ||
" for i in range(K):\n", | ||
" viterbi_prob[i][0] = Pi[i] * E[i][Y[0]]\n", | ||
" viterbi_path[i][0] = 0\n", | ||
" \n", | ||
" # Part II: Compute Viterbi probabilities and path\n", | ||
" for j in range(1, T):\n", | ||
" for i in range(K):\n", | ||
" viterbi_prob[i, j] = max(E[i][Y[j]] * P[k][i] * viterbi_prob[k, j-1] for k in range(K))\n", | ||
" viterbi_path[i, j] = np.argmax([E[i][Y[j]] * P[k][i] * viterbi_prob[k, j-1] for k in range(K)])\n", | ||
" \n", | ||
" # Part III: Re-track the most likely path\n", | ||
" x = []\n", | ||
" x_t = np.argmax(viterbi_prob[:, T-1])\n", | ||
" x.append(x_t)\n", | ||
" for j in range(T-1, 0, -1):\n", | ||
" x_prev = int(viterbi_path[int(x_t), j])\n", | ||
" x.append(x_prev)\n", | ||
" x_t = x_prev\n", | ||
" \n", | ||
" # Reverse path to get the correct order\n", | ||
" x=x[::-1]\n", | ||
" print(viterbi_prob)\n", | ||
" print(viterbi_path)\n", | ||
" \n", | ||
" return x, np.max(viterbi_prob[:, T-1])\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "4526f268", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"def forward_algorithm(S, Pi, E, P, Y, Pii=0):\n", | ||
" K = len(S)\n", | ||
" T = len(Y)\n", | ||
" \n", | ||
" forward_prob = np.zeros((K, T))\n", | ||
" \n", | ||
" # Part I: Initialization\n", | ||
" for i in range(K):\n", | ||
" forward_prob[i][0] = Pi[i] * E[i][Y[0]]\n", | ||
" \n", | ||
" # Part II: Recursion\n", | ||
" for j in range(1, T):\n", | ||
" for i in range(K):\n", | ||
" forward_prob[i, j] = sum(forward_prob[k, j-1] * P[k][i] * E[i][Y[j]] for k in range(K))\n", | ||
" \n", | ||
" # Part III: Termination\n", | ||
" total_prob = np.sum(forward_prob[:, T-1])\n", | ||
" return total_prob\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "6a25233e", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[[2.800000e-01 1.120000e-02 9.600000e-04 2.400000e-04 4.800000e-04\n", | ||
" 1.536000e-04 4.915200e-05 1.966080e-06 1.179648e-06 4.718592e-08]\n", | ||
" [5.000000e-02 4.800000e-02 1.200000e-02 3.000000e-03 3.000000e-04\n", | ||
" 4.320000e-05 9.216000e-06 7.372800e-06 7.372800e-07 2.654208e-07]\n", | ||
" [1.600000e-01 2.240000e-02 2.880000e-03 7.200000e-04 3.600000e-04\n", | ||
" 7.680000e-05 2.457600e-05 3.932160e-06 8.847360e-07 9.437184e-08]]\n", | ||
"[[0. 0. 1. 1. 1. 0. 0. 0. 1. 0.]\n", | ||
" [0. 2. 1. 1. 1. 2. 2. 2. 1. 2.]\n", | ||
" [0. 0. 1. 1. 1. 0. 0. 0. 1. 0.]]\n", | ||
"Most likely weather sequence: ['sunny', 'cloudy', 'cloudy', 'cloudy', 'rainy', 'rainy', 'sunny', 'cloudy', 'sunny', 'cloudy']\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Given data\n", | ||
"S = ['rainy', 'cloudy', 'sunny']\n", | ||
"Pi = [0.35, 0.25, 0.4]\n", | ||
"P = [\n", | ||
" [0.4, 0.2, 0.4],\n", | ||
" [0.2, 0.5, 0.3],\n", | ||
" [0.3, 0.6, 0.1]\n", | ||
"]\n", | ||
"E = [\n", | ||
" [0.8, 0.1, 0.1],\n", | ||
" [0.2, 0.5, 0.3],\n", | ||
" [0.4, 0.2, 0.4]\n", | ||
"]\n", | ||
"#activities = ['read', 'read', 'shop', 'play', 'shop']\n", | ||
"activities = ['read', 'shop', 'play', 'play', 'read', 'play', 'shop', 'shop', 'shop']\n", | ||
"#observation_indices = [0, 0, 2, 1, 2] # Convert activities to observation indices(read->0,play->1,shop->2)\n", | ||
" \n", | ||
"# (a) Find the most likely weather sequence\n", | ||
"most_likely_weather_sequence, _ = viterbi_algorithm(S, Pi, E, P, observation_indices)\n", | ||
"print(\"Most likely weather sequence:\", [S[state] for state in most_likely_weather_sequence])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"id": "50b47d13", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[[2.00000000e-02 2.36250000e-01 7.44187500e-02 2.34419062e-02\n", | ||
" 8.20466719e-04 2.81302875e-04 1.32915608e-04 2.29678171e-04\n", | ||
" 8.03873600e-06 2.17045872e-05]\n", | ||
" [1.80000000e-01 2.30400000e-02 4.25250000e-02 1.33953750e-02\n", | ||
" 6.32931469e-03 1.21522842e-03 2.33323857e-04 2.98654536e-05\n", | ||
" 6.20131063e-05 7.93767760e-06]\n", | ||
" [3.50000000e-01 2.16000000e-02 1.41750000e-02 5.10300000e-03\n", | ||
" 3.75070500e-03 1.77220811e-03 3.40263958e-04 2.79988628e-05\n", | ||
" 3.21549440e-05 7.44157275e-06]]\n", | ||
"[[0. 2. 0. 0. 0. 2. 2. 2. 0. 2.]\n", | ||
" [0. 1. 0. 0. 0. 1. 1. 1. 0. 1.]\n", | ||
" [0. 1. 0. 1. 1. 1. 1. 1. 0. 1.]]\n", | ||
"Most likely sequence of aircraft control laws: ['direct', 'normal', 'normal', 'normal', 'alternate', 'alternate', 'direct', 'normal', 'direct', 'normal']\n", | ||
"0.0011761669647830317\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Given data\n", | ||
"S = ['normal', 'alternate', 'direct']\n", | ||
"Pi = [0.2, 0.3, 0.5]\n", | ||
"P = [\n", | ||
" [0.35, 0.45, 0.2],\n", | ||
" [0.28, 0.32, 0.4],\n", | ||
" [0.75, 0.1, 0.15]\n", | ||
"]\n", | ||
"E = [\n", | ||
" [0.1, 0.9],\n", | ||
" [0.6, 0.4],\n", | ||
" [0.7, 0.3]\n", | ||
"]\n", | ||
"pitch_data = ['up', 'down', 'down', 'down', 'up', 'up', 'up', 'down', 'up', 'down']\n", | ||
"#pitch_data = ['up', 'down']\n", | ||
"\n", | ||
"# Convert pitch data to observation indices\n", | ||
"observation_indices = [0 if pitch == 'up' else 1 for pitch in pitch_data]\n", | ||
"\n", | ||
"# Implement Viterbi algorithm\n", | ||
"most_likely_control_sequence, _ = viterbi_algorithm(S, Pi, E, P, observation_indices)\n", | ||
"print(\"Most likely sequence of aircraft control laws:\", [S[state] for state in most_likely_control_sequence])\n", | ||
"print(forward_algorithm(S,Pi,E,P,observation_indices,Pii=0))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |