Skip to content

Commit

Permalink
Implement the DCT function using numpy
Browse files Browse the repository at this point in the history
  • Loading branch information
peach-water committed May 14, 2024
1 parent 2fb5afa commit 9e9192d
Showing 1 changed file with 23 additions and 2 deletions.
25 changes: 23 additions & 2 deletions python/rapid_paraformer/kaldifeat/feature.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import numpy as np
from scipy.fftpack import dct


# ---------- feature-window ----------
@@ -137,6 +136,28 @@ def extract_window(waveform, blackman_coeff, dither, window_size, window_shift,

# ---------- feature-functions ----------

def dct_np(x: np.array, norm=None):
x_shape = x.shape
N = x_shape[-1]

v = np.hstack([x[:, ::2], x[:, 1::2][:, ::-1]])
Vc = np.fft.fft(v)
Vc = np.dstack([np.real(Vc), np.imag(Vc)])

k = - np.arange(N, dtype=x.dtype)[None, :] * np.pi / (2*N)
W_r = np.cos(k)
W_i = np.sin(k)

V = Vc[:, :, 0] * W_r - Vc[:, :, 1] * W_i

if norm == "ortho":
V[:, 0] /= np.sqrt(N) * 2
V[:, 1:] /= np.sqrt(N/2) * 2

V = 2 * V
return V


def compute_spectrum(frames, n):
complex_spec = np.fft.rfft(frames, n)
return np.absolute(complex_spec)
@@ -424,7 +445,7 @@ def compute_mfcc_feats(
window_type=window_type,
dtype=dtype
)
feat = dct(feat, type=2, axis=1, norm='ortho')[:, :num_ceps]
feat = dct_np(feat, norm="ortho")[:, :num_ceps]
lifter_coeffs = compute_lifter_coeffs(cepstral_lifter, num_ceps).astype(dtype)
feat = feat * lifter_coeffs
if use_energy:

0 comments on commit 9e9192d

Please sign in to comment.