Bypass the classical–quantum barrier using advanced fractal–ethics mathematics.
This repository fuses two core engines:
- Zero Quantum Bypass – higher‑dimensional entanglement, chaos filtering, and ethical overlays.
- Genetic Adaptation Equation – real‑time evolutionary tuning for system learning.
Together, they deliver a practical Python toolkit to simulate, test, and deploy adaptive bypass strategies that thrive even in noisy quantum‑like environments.
Quantum-Bypass-Framework/
├── README.md
├── LICENSE
├── requirements.txt
├── .gitignore
├── data/
│ └── sample_signals.json
├── src/
│ ├── __init__.py
│ ├── quantum_bypass.py
│ ├── equations.py
│ ├── genetic_adaptation.py
│ └── utils.py
├── tests/
│ └── test_equations.py
└── notebooks/
└── demo_bypass_framework.ipynb
pip install -r requirements.txt
python - << 'PY'
from src import QuantumBypassSystem
model = QuantumBypassSystem()
result = model.process(0.7, 1.3)
print("Bypass output:", result)
PYdata/sample_signals.json contains 1,000 synthetic signal points for rapid experimentation.
pytest testsPRs welcome! Align with the probability of goodness ≥ 0.9.
MIT