Bidirectional Self-Training with Multiple Anisotropic Prototypes for Domain Adaptive Semantic Segmentation
(ACM MM 2022) This is a pytorch implementation of [BiSMAP](Bidirectional Self-Training with Multiple Anisotropic Prototypes for Domain Adaptive Semantic Segmentation).
- Python 3.7.0
- GPU Memory >= 11G (Preferably using a gpu with tensor core)
- Pytorch 1.8.2
-
Download The GTA5 Dataset
-
Download The SYNTHIA Dataset
-
Download The Stylized Datasets
-
Download The Cityscapes Dataset
-
Download The pretrained model
The data folder is structured as follows:
├── dataset/
│ ├── CityScape/
| | ├── gtFine/
| | ├── leftImg8bit/
│ ├── GTA5/
| | ├── images/
| | ├── labels/
│ ├── gta_stylized/
│ └──
└── pretrained/
│ ├── r101_1x_sk0.pth
│ ├── r152_1x_sk1.pth
│ ├── gta5_dill_model.pkl
│ ├── gta5_warmup_model.pkl
...
Our final model is available via MEGA
python3 test.py --config ./configs/gta5_test.yml
python source_transferability_map.py --config ./configs/gta5_stm.yml
python generate_maps_pseudolabel.py --config configs/gta5_maps_pla.yml --threshold 100
python train.py --config configs/gta5_st.yml --logdir ./runs/gta5_st
# distill 1
python3 inference.py --config ./configs/inference.yml --checkpoint_path ./runs/gta5_st/from_gta5_to_cityscapes_on_deeplabv3_plus_best_model.pkl --save_path pseudolabels_dill
python3 train.py --gpu 1 --config ./configs/gta5_dill.yml --dill_teacher ./runs/gta5_st/from_gta5_to_cityscapes_on_deeplabv3_plus_best_model.pkl --logdir ./runs/gta5_dill_1
# distill 2
python3 inference.py --config ./configs/inference.yml --checkpoint_path ./runs/gta5_dill_1/from_gta5_to_cityscapes_on_deeplabv3_plus_best_model.pkl --save_path pseudolabels_dill
python3 train.py --gpu 1 --config ./configs/gta5_dill.yml --dill_teacher ./runs/gta5_dill_1/from_gta5_to_cityscapes_on_deeplabv3_plus_best_model.pkl --logdir ./runs/gta5_dill_2
If you use this code in your research please consider citing
@article{lu2022bidirectional,
title={Bidirectional Self-Training with Multiple Anisotropic Prototypes for Domain Adaptive Semantic Segmentation},
author={Lu, Yulei and Luo, Yawei and Zhang, Li and Li, Zheyang and Yang, Yi and Xiao, Jun},
journal={arXiv preprint arXiv:2204.07730},
year={2022}
}