Skip to content

This process illustrates how to structure and manipulate relational databases effectively, demonstrating key SQL operations and transformations within an Informatica environment. The provided images and detailed SQL commands serve as a comprehensive guide for implementing and understanding these database management tasks.

Notifications You must be signed in to change notification settings

SAZZAD-AMT/Informatica-Data-Integration-and-Transformation-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Informatica Data Integration and Transformation Project

This process illustrates how to structure and manipulate relational databases effectively, demonstrating key SQL operations and transformations within an Informatica environment. The provided images and detailed SQL commands serve as a comprehensive guide for implementing and understanding these database management tasks.

Images

*Image 1: A diagram explaining the ETL process.* *Image 2: Workflow of a sample Informatica job.* *Image 3: Data flow overview in Informatica.* *Image 4: Informatica mapping example.* *Image 5: Error handling in Informatica.* *Image 6: Performance tuning tips for Informatica.*

SQL Code

The SQL scripts below are used to create and manage database tables, insert data, and perform various operations as part of the ETL (Extract, Transform, Load) process in Informatica.

29.5.24 - Initial Table Setup and Data Insertion

The first step involves setting up the customer and customerdata tables, inserting initial data into the customer table, and demonstrating some basic SQL operations such as renaming a column and truncating a table.

ALTER TABLE customer (
    customer_id INT PRIMARY KEY,
    cust_first_name VARCHAR2(30),
    cust_last_name VARCHAR2(30),
    cust_phone_no INT,
    cust_email_id VARCHAR2(50),
    order_id INT
);

ALTER TABLE customerdata RENAME COLUMN cust_full_name TO cust_first_name;

INSERT INTO customer (customer_id, cust_first_name, cust_last_name, cust_phone_no, cust_email_id, order_id) 
VALUES (1, 'John', 'Doe', 1234567890, 'johndoe@example.com', 1001);

INSERT INTO customer (customer_id, cust_first_name, cust_last_name, cust_phone_no, cust_email_id, order_id) 
VALUES (2, 'Jane', 'Smith', 2345678901, 'janesmith@example.com', 1002);

INSERT INTO customer (customer_id, cust_first_name, cust_last_name, cust_phone_no, cust_email_id, order_id) 
VALUES (3, 'Mike', 'Johnson', 3456789012, 'ikejohnson@example.com', 1003);

INSERT INTO customer (customer_id, cust_first_name, cust_last_name, cust_phone_no, cust_email_id, order_id) 
VALUES (4, 'Sara', 'Brown', 4567890123, 'arabrown@example.com', 1004);

INSERT INTO customer (customer_id, cust_first_name, cust_last_name, cust_phone_no, cust_email_id, order_id) 
VALUES (5, 'David', 'Williams', 5678901234, 'davidwilliams@example.com', 1005);

Creating and Truncating Tables

CREATE TABLE customerdata (
    customer_id INT PRIMARY KEY,
    cust_full_name VARCHAR2(30),
    cust_last_name VARCHAR2(30),
    cust_phone_no INT,
    cust_email_id VARCHAR2(50),
    order_id INT
);

SELECT * FROM customerdata;

TRUNCATE TABLE customerdata;

Employee Department Tables

-- 31.5.24 --

CREATE TABLE customerdetails (
    customer_id INT PRIMARY KEY,
    cust_full_name VARCHAR2(30),
    cust_phone_no INT,
    cust_email_id VARCHAR2(50),
    order_id INT
);

SELECT * FROM customer;
SELECT * FROM customerdata;
SELECT * FROM customerdetails;

TRUNCATE TABLE customerdetails;

-- 3.6.24 --

CREATE TABLE org_employee_dept1(
    emp_id INT, 
    emp_full_name VARCHAR2(50), 
    emp_salary INT, 
    dept_id INT
);

CREATE TABLE org_employee_dept2(
    emp_id INT, 
    emp_full_name VARCHAR2(50), 
    emp_salary INT, 
    dept_id INT
);

CREATE TABLE org_employee_dept3(
    emp_id INT, 
    emp_full_name VARCHAR2(50), 
    emp_salary INT, 
    dept_id INT
);

CREATE TABLE org_employee_default(
    emp_id INT, 
    emp_full_name VARCHAR2(50), 
    emp_salary INT, 
    dept_id INT
);

COMMIT;

SELECT * FROM org_employee_dept3;
SELECT * FROM employees WHERE department_id = 30;
SELECT * FROM employees;

TRUNCATE TABLE org_employee_default;

Modifying Employee Data Table


CREATE TABLE org_employee_data(
    emp_id INT, 
    emp_full_name VARCHAR2(50), 
    emp_salary INT, 
    dept_id INT
);

ALTER TABLE org_employee_data MODIFY emp_full_name VARCHAR2(100);

SELECT * FROM org_employee_data;

Aggregator Transformation

CREATE TABLE dept_salary(
    dept_id INT, 
    sum_dept_salary INT
);

SELECT * FROM dept_salary
ORDER BY dept_id ASC;

SELECT * FROM employees;

Joining, Master, Full Details

CREATE TABLE SUBJECTS(
    SUBJECT_ID INT, 
    SUBJECT_NAME VARCHAR(30)
);

INSERT INTO SUBJECTS VALUES (1, 'MATHS');
INSERT INTO SUBJECTS VALUES (2, 'CHEMISTRY');
INSERT INTO SUBJECTS VALUES (3, 'PHYSICS');

TRUNCATE TABLE subjects;

CREATE TABLE STUDENTS(
    STUDENT_ID INT, 
    SUBJECT_ID INT
);

INSERT INTO STUDENTS VALUES (10, 1);
INSERT INTO STUDENTS VALUES (20, 2);
INSERT INTO STUDENTS VALUES (30, NULL);

SELECT * FROM students_rec;

TRUNCATE TABLE students_rec;

CREATE TABLE STUDENT_REC(
    SUBJECT_ID INT,
    STUDENT_ID INT,
    SUBJECT_NAME VARCHAR(30)
);

Rank Transformation

CREATE TABLE employee_rank(
    emp_id INT, 
    dept_id INT, 
    salary INT, 
    rank INT
);

SELECT * FROM employee_rank;

Sequence Transformation

CREATE TABLE employee_sequence_number(
    sr_no INT,
    emp_id INT, 
    dept_id INT, 
    salary INT
);

SELECT * FROM employee_sequence_number;

The process described in your Markdown file is generally referred to as Data Integration and Transformation using Informatica. It involves several key steps such as:

Database Schema Design and Alteration: Creating and modifying table structures. Data Insertion and Manipulation: Adding data to tables and updating existing data.

Data Retrieval: Running SQL queries to fetch data. Data Truncation: Clearing data from tables. Data Aggregation: Summarizing data using transformations. Data Transformation: Changing data formats and structures. Data Joining: Combining data from multiple tables. Performance Tuning: Enhancing the efficiency of data operations.

This comprehensive process ensures that data is efficiently organized, manipulated, and retrieved to meet the needs of business intelligence and analytics.

About

This process illustrates how to structure and manipulate relational databases effectively, demonstrating key SQL operations and transformations within an Informatica environment. The provided images and detailed SQL commands serve as a comprehensive guide for implementing and understanding these database management tasks.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published