Skip to content

Scrapes LinkedIn data. Conducts sentiment analysis on what traits and qualifications employers are looking for.

Notifications You must be signed in to change notification settings

SCLP-Association/JobExtract

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JobExtract

JobExtract Graphic User Interface

ICT 1002 Python Project

Members: Xue Wang, Jon, Serene, Olivia, Gavin

We are students from Singapore Institute of Technology and this is our project for ICT 1002, where we were tasked to scrape data from LinkedIn and conduct job sentiment analysis.

Overview

The objective of this project is to identify competencies that employers are looking out for. We scraped data from LinkedIn - one of the leading international recruiting platforms - and proceeded to process and analyze our data. The countries analyzed were Singapore, USA, China and Russia.

Libaries Used

Library Function
Selenium Data crawling from LinkedIn, populate dataset
Pandas Data manipulation and analysis, manipulate numerical tables
NLTK Natural language processing, working with human language data
Langdetect Detecting language of data
PandasGUI Viewing, plotting and analyzing Pandas DataFrames
Tkinter Graphical user interface
Seaborn High-level interface for drawing statistical graphs
Matplotlib Utility library to assist Seaborn in creating graphs
Wordcloud Creating visual representations of keywords
Pillow Image processing

User Guide

View the detailed user guide here.

Users are able to crawl data, clean data, as well as open an interactive excel reader using the GUI.

  • To crawl data, input the job, country, seniority level and number of data to be crawled. Do note that the maximum data to crawl is 1000.
  • To view cleaned data, you can use the interactive excel reader, and import the excel data file.

Interactive Excel Reader

List of keywords

  • Here are the list of keywords our team has been provided to analyze in job descriptions.
# Dependent Competencies
['customer', 'team', 'partner', 'people', 'relationship', 'communication', 'support', 'contact', 'understanding', 'responsibility', 'care', 'group', 'communicate', 'staff', 'manner', 'help', 'follow', 'share', 'partner', 'support', 'home', 'assist', 'family', 'serve', 'consultant']

# Independent Competencies
['job', 'solution', 'operate', 'knowledge', 'comply', 'degree', 'legislation', 'technology', 'write', 'deliver', 'sell', 'learn', 'software', 'performance', 'project', 'service', 'healthcare', 'perform', 'compliance', 'emergency', 'risk', 'bachelor', 'issue', 'retail', 'conflict', 'accounting', 'forecast', 'negotiation', 'achieve', 'jurisdiction', 'quality', 'information', 'territory', 'training', 'report', 'tool', 'presentation', 'problem', 'success', 'implement', 'individual', 'engineering', 'order', 'result', 'negotiate', 'specialist', 'deal', 'operation', 'promote', 'study', 'qualification', 'program', 'self', 'execute', 'initiative', 'task', 'win', 'wealth', 'education']

Analysis

  • Detailed analysis can be found here

Installation

The installation guide can be found here.

Timeline

  • Completed!!!!
  • Components:
    • Data Crawling - 27 Sept
      • Selenium
    • Data Cleaning - 6 Oct
      • Lang Detect
      • NLTK
    • Data Analysis - 14 Oct
      • Seaborn
      • Matplotlib
    • GUI - 20 Oct

Structure

Files are split into 3 folders, src. images and venv. DO NOT ADD OR REMOVE FILES IN THE VENV FOLDER! Venv is installed by the user.

    venv Folder (activate when coding)
      |_ ...
    images Folder (images)
      |_ ...
    src Folder
      |_ controller Folder (all logic related code)
          |_ __init__.py
          |_ augmentor.py
          |_ cleaner.py
          |_ counter.py
          |_ crawler.py
          |_ merger.py
          |_ processor.py
          |_ models Folder (data objects)
              |_ __init__.py
              |_ jobs.py
              |_ keywords.py
              |_ keywordsLook.py
      |_ data Folder
          |_ augmentedData Folder
              |_ (augmented data files...)
          |_ mergedData Folder
              |_ (merged data files...)
          |_ cleanedData Folder
              |_ (cleaned data files...)
          |_ rawData Folder
              |_ (raw data files...)
          |_ keywords Folder
              |_ (keywords data files...)
      |_ views Folder (analysis and GUI)
          |_ __init__.py
          |_ graphicUI.py
          |_ analysisPlots Folder
              |_ (plots....)
          |_ analysisWordCloud Folder
              |_ word_cloud.py
      |_ misc Folder (misc code, installer)
    README.md
    Installation.md
    Analysis.md
    requirements.txt (used to install modules in venv)

About

Scrapes LinkedIn data. Conducts sentiment analysis on what traits and qualifications employers are looking for.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%