Skip to content

🎮 A configurable Breakout environment for reinforcement learning

License

Notifications You must be signed in to change notification settings

SSARCandy/breakout-env

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Breakout-env

A gym like Breakout environment but with more configurable options.

Configurable Options

Option Description Type Range Default Value
max_step Max step per episode. int 0 ~ Inf 10000
lifes Lifes per episode. int 0 ~ 9 5
ball_pos Ball's initial position. [y, x] [int, int] -Inf ~ Inf [100, 40]
ball_speed Ball's initial velocity. [y, x] [int, int] -Inf ~ Inf [4, 2]
ball_color Ball's color. (gray scale) int 0 ~ 255 143
ball_size Ball's size. [h, w] [int, int] 1 ~ Inf [5, 2]
paddle_width Paddle's width. int 1 ~ 100 15
paddle_color Paddle's color. (gray scale) int 0 ~ 255 143
paddle_speed Paddle's moving speed. int 1 ~ Inf 3
bricks_rows Number of bricks row. int 0 ~ Inf 6
bricks_color Row color of bricks.* list of int 0 ~ 255 [200, 180, 160, 140, 120, 100]
bricks_reward The reward of bricks.* list of int -Inf ~ Inf [6, 5, 4, 3, 2, 1]

* len(bricks_color) and len(bricks_color) should equal to bricks_rows.

Installation

Install from PyPI:

$ pip install breakout_env

Install from master branch

$ pip install git+https://github.com/SSARCandy/breakout-env.git@master

Example

Interact with environment

from breakout_env import Breakout

# Create Breakout environment with some options.
env = Breakout({
    'lifes': 7,
    'paddle_width': 30,
    'paddle_speed': 5
  })

for ep in range(2):
  obs = env.reset()
  while True:
    # Select random action
    action = random.randint(0, env.actions - 1)
    obs, reward, done, _ = env.step(action)
    print('Episode: {}, Reward: {}, Done: {}'.format(ep, reward, done))
    if done:
      break

Visualize the game

The observation retuned by env is a numpy 2D array, it can be easily visualize using some library like OpenCV or matplotlib.

import cv2
from breakout_env import Breakout

env = Breakout()
env.reset()

while True:
  # Select random action
  action = random.randint(0, env.actions - 1)
  obs, _, _, _ = env.step(action)
  # Show the observation using OpenCV
  cv2.imshow('obs', obs)
  cv2.waitKey(1)
  if done:
    break

Develop Requirement

  • python3
  • numpy

Reference

About

🎮 A configurable Breakout environment for reinforcement learning

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages