Skip to content

Schrausser/ConsoleApp_DistributionFunctions

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Distribution Functions

Console applicationes for distribution functions implemented in FunktionWin (see Schrausser, 2023a, 2024, res.). Theta applications generating distributions and estimators for several parameters $\theta$ within different designs via bootstrap method, with given number of resamples $B$, where bootstrap estimator

$$\hat\theta_B=B^{-1}⋅\sum_{i=1}^B\theta^*_i.$$

Implemented in ThetaWin (see Schrausser, 2009, 2023b, res.).

Binomial

$$f(X\le k|n)=\sum_{i=0}^k{\frac{n!}{i!⋅(n-i)!}}⋅p^i⋅q^{(n-i)}.$$

Usage:

 Binomial [p] [k] [n] [[1]]
 [p] ............. probability of event A
 [k] ............. n of events A
 [n] ..............n of trials
 [1] ............. (1) full output

Binomial_T

$$f(X\le b|b,c)=p=\sum_{i=0}^b{\frac{(b+c)!}{i!⋅(b+c-i)!}}⋅2^{-i}⋅2^{-(b+c-i)}.$$

Usage:

 Binomial_T [b] [c] [[1]]
 [b] ............. cell count b
 [c] ............. cell count c
 [1] ............. (1) full output

epsilon

$$\varepsilon=\frac{\mu_1-\mu_0}{\hat\sigma}.$$

Usage:

 epsilon [mode] [Q0] [s] [n] [e|Q1] [p] [df] [[x]]
 [mode] .......... (1)Effect-size (2)Theta.1
 [Q0] .............Theta.0
 [s] ............. Standard deviation
 [n] ............. n of cases
 [e|Q1] .......... Epsilon | Theta.1
 [p] ............. Percent-level (0.00)
 [df] ............ Degrees of freedom n - (.)
 [x] ............. Test value

F_Function

$$F(F,df_1, df_2)=1-p^{\alpha 2}= \int\limits_0^F \frac{\mathit{\Gamma} _{(\frac{df_1+df_2}{2})}}{\mathit{\Gamma} _{(\frac{df_1}{2})} ⋅\mathit{\Gamma} _{(\frac{df_2}{2})}} ⋅\Bigl(\frac{df_1}{df_2}\Bigr)^{\frac{df_1}{2}} ⋅F^{\frac{df_1}{2}-1} ⋅\Bigl(1+\frac{df_1}{df_2} ⋅F\Bigr)^{-\frac{df_1+df_2}{2}} \ dF.$$

Usage:

  F_Function [mode] [x] [n1] [n2]
  [mode] ......... (1)Fx=p->F (2)Fy=F->p
  [x] ............ p-Wert/F-Wert
  [n1] ........... n1
  [n2] ........... n2

Fisher_Exact

$$f(X=a|a,b,c,d)=P0=\frac{(a+b)!⋅(c+d)!⋅(a+c)!⋅(b+d)!}{(a+b+c+d)!⋅a!⋅b!⋅c!⋅d!},$$

$$f(X\le n|a,b,c,d)=p^{exact2}=\sum\limits_{i=0}^n Pi;\ Pi\le P0.$$

Usage:

  Fisher_Exact [a] [b] [c] [d] [[1]]
  [a][b][c][d] ... cell counts a,b,c,d
  [1] ............ (1) full output

Fisher_Z

$$Z=\frac{1}{2}⋅\mathrm{log_e}\Bigl(\frac{1+r}{1-r}\Bigr),$$

$$r=\frac{\mathrm{e}^{2⋅Z}-1}{\mathrm{e}^{2⋅Z}+1}.$$

Usage:

  Fisher_Z [mode] [x]
  [mode] ......... (1)r->Z (2)Z->r
  [x] ............ r-value/Z-value

GAMMA_Function

$$f(x,t)=\mathit{\Gamma} = \int\limits_0^\infty {t^{x-1} } ⋅\mathrm{e}^{-t} \ dt+c.$$

Usage:

  GAMMA_Function [mode] [value]
  [mode] ......... (1)F(x)->⌈ (2)F'(⌈)->x
  [value] ........ x / ⌈

GAMMA

Usage:

  GAMMA [n] [input] [output]
  [n] ............ n of cases
  [input] ........ input file
  [output] ....... output file

Geometric

$$f(X\le r|p)=\sum_{i=0}^r{p⋅q^i}.$$

Usage:

  Geometric [p] [r+1] [[1]]
  [p] ............ probability of event A
  [r+1] .......... n of trials
  [1] ............ (1) full output

Hypergeometric

$$f(X\le k|n,K,N)=\sum_{i=0}^k{\frac{\binom{K}{i}⋅\binom{N-K}{n-i}}{\binom{N}{n}}}.$$

Usage:

  Hypergeometric [k] [n] [N] [K] [[1]]
  [k] ............ n of events A in Sub-Population
  [n] ............ size of Sub-Population
  [N] ............ size of Population
  [K] ............ n of events A in Population
  [1] ............ (1) full output

Poisson

$$f(X\le k|n,p)=\sum_{i=0}^k\frac{(n⋅p)^i}{\mathrm{e}^{n⋅p}⋅i!}.$$

Usage:

  Poisson [p] [k] [n] [[1]]
  [p] ............ probability of event A
  [k] ............ n of events A
  [n] ............ n of trials
  [1] ............ (1) full output

t_Function

$$F(t,df)=p=\int\limits_{-\infty}^t\frac{\mathit{\Gamma} _{(\frac{df-1}{2})}}{\mathit{\Gamma} _{(\frac{df}{2})}}⋅(df⋅\mathrm{\pi})^{-\frac{1}{2}}⋅\Bigl(1+\frac{t^2}{df}\Bigr)^{-\frac{df-1}{2}}\ dt.$$

Usage:

  t_Function [mode] [x] [n]
  [mode] ......... (1)Fx=p->t (2)Fy=t->p
  [x] ............ p-value/t-value
  [n] ............ n of cases

x2_Function

$$F(\chi^2,df)=1-p^{\alpha 2}= \int\limits_0^{\chi^2} \frac{1}{2^{\frac{df}{2}}⋅\mathit{\Gamma} _{(\frac{df}{2})}} ⋅(\chi^2)^{\frac{df}{2}-1} ⋅\mathrm{e}^{-\frac{\chi^2}{2}}\ d\chi^2.$$

Usage:

  x2_Function [mode] [x] [n]
  [mode] ......... (1)Fx=p->x² (2)Fy=x²->p
  [x] ............ p-value/x²-value
  [n] ............ n of cases

z_Dichte

$$f(z) =\vartheta= \frac{1}{{\sqrt {2⋅\mathrm{\pi}} }}⋅\mathrm{e}^{-\frac{z^2}{2}},$$

$$f^{-1}(z)=f(\vartheta)=z= \sqrt{\ln\Biggl(\frac{\vartheta}{\sqrt{(2⋅ \mathrm{\pi} )^{-1}}}\Biggr)^{-2}},$$

$$F(z)=p=\int\limits_{-\infty}^z\vartheta \ dz.$$

Usage:

  z_Dichte [modus] [wert] [[f]]
  [modus] ........ (1)fx=z->d (2)fy=d->z (3) ∫x=z->p
                   (4) ∫'p->z (5) ∫'p->d (6) ∫y=d->p
  [wert] ......... z-Wert/z-Dichte/Prozentrang p
  [f] ............ (1)z-Dichte Funktionsgraph

z_Function

Usage:

  z_Function [mode] [x]
  [mode] ......... (1)Fx=p->z (2)Fy=z->p
  [x] ............ p-value/z-value

Theta

Usage:

Theta [sd] [min] [max] [qq] [q] [v] [s] [[x]] [[g]]
 [sd]  ........... Seed: |0| Zeitwert
 [min] ........... R Minimalwert
 [max] ........... R Maximalwert
 [qq]  ........... Theta-Theta/
 [q]   ........... Theta:
                   |0| Harmonisches Mittel (HM)
                   |1| Arithmetisches Mittel (AM)
                   |2| Summe (SUM)
                   |3| Standardabweichung (SD)
                   |4| Populationsvarianzschaetzung (VAR)
                   |5| Produktsumme(PSM)
                   |6| Geometrisches Mittel(GM)
                   |7| Schrausser's d (D)
                   |8| DvarO (DV)
 [v]  ...........  n zu Theta (v)
 [s]  ...........  n Subpopulationen (s)
 [x]  ...........  Vergleichswert x
 [g]  ...........  |1| Wertebereich ganzzahlig

Theta Q

Usage:

 Theta_Q [sd][min][max][qq][qp][qs1][qs2][qQ][v][m][n][s] [[x]] [[g]]
 [sd]  ........................... Seed: |0| Zeitwert
 [min] ........................... R Minimalwert
 [max] ........................... R Maximalwert
 [qq]  ........................... Theta-Theta/
 [qp]  ........................... Theta P/
 [qs1] [qs2] ..................... Theta S1, S2:
                                   |0| Harmonisches Mittel (HM)
                                   |1| Arithmetisches Mittel (AM)
                                   |2| Summe (SUM)
                                   |3| Standardabweichung (SD)
                                   |4| Populationsvarianzschaetzung (VAR)
                                   |5| Produktsumme(PSM)
                                   |6| Geometrisches Mittel(GM)
                                   |7| Schrausser's d (D)
                                   |8| DvarO (DV)
 [qQ]  ........................... Theta Q:
                                   |1| Differenz
                                   |2| Quotient
                                   |3| Summe
                                   |4| Produkt
 [v]  ...........................  n zu Theta P (v)
 [m]  ...........................  n zu Theta S1 (m)
 [n]  ...........................  n zu Theta S2 (n)
 [s]  ...........................  n Subpopulationen (s)
 [x]  ...........................  Vergleichswert x
 [g]  ...........................  |1| Wertebereich ganzzahlig

Theta Qv

Usage:

Theta_Qv [sd][min][max][qq][qp][qs1][qs2][qQ][QQ][v][n][s] [[x]] [[g]]
 [sd]  ........................... Seed: |0| Zeitwert
 [min] ........................... R Minimalwert
 [max] ........................... R Maximalwert
 [qq]  ........................... Theta-Theta/
 [qp]  ........................... Theta P/
 [qs1][qs2]....................... Theta S1, S2/
 [qQ]  ........................... Theta Q:
                                   |0| Harmonisches Mittel (HM)
                                   |1| Arithmetisches Mittel (AM)
                                   |2| Summe (SUM)
                                   |3| Standardabweichung (SD)
                                   |4| Populationsvarianzschaetzung (VAR)
                                   |5| Produktsumme(PSM)
                                   |6| Geometrisches Mittel(GM)
                                   |7| Schrausser's d (D)
                                   |8| DvarO (DV)
 [QQ]  ........................... Theta Theta Q:
                                   |1| Differenz
                                   |2| Quotient
                                   |3| Summe
                                   |4| Produkt
                                   |5| Korrelation
                                   |6| Kovarianz
                                   |7| Determinationskoeffizient
                                   |8| Redundanz
 [v]  ...........................  n zu Theta P (v)
 [n]  ...........................  n zu Theta S1,S2 (n)
 [s]  ...........................  n Subpopulationen (s)
 [x]  ...........................  Vergleichswert x
 [g]  ...........................  |1| Wertebereich ganzzahlig

Theta rQ

Usage:

 Theta_rQ [sd][min][max][qq][qp][q11][q12][q21][q22][qr1][qr2][qQ][v][m][n][s] [[x]] [[g]]
 [sd]  ....................... Seed: |0| Zeitwert
 [min] ....................... R Minimalwert
 [max] ....................... R Maximalwert
 [qq]  ....................... Theta-Theta/
 [qp]  ....................... Theta P/
 [q11][q12] .................. Theta S11, S12/
 [q21][q22] .................. Theta S21, S22:
                               |0| Harmonisches Mittel (HM)
                               |1| Arithmetisches Mittel (AM)
                               |2| Summe (SUM)
                               |3| Standardabweichung (SD)
                               |4| Populationsvarianzschaetzung (VAR)
                               |5| Produktsumme(PSM)
                               |6| Geometrisches Mittel(GM)
                               |7| Schrausser's d (D)
                               |8| DvarO (DV)
 [qr1][qr2] ...................Theta Regressionen 1,2/
                               |1| Korrelation (kor)
                               |2| Kovarianz (cov)
                               |3| Determinatinskoeffizient (det)
                               |4| Redundanz (red)
 [qQ]  ....................... Theta Q:
                               |1| Differenz (Diff)
                               |2| Quotient (Quot)
                               |3| Summe (Summ)
                               |4| Produkt (Prod)
 [v]  .......................  n zu Theta P (v)
 [m]  .......................  n zu Theta S11,S12 (m)
 [n]  .......................  n zu Theta S21,S22 (n)
 [s]  .......................  n Subpopulationen (s)
 [x]  .......................  Vergleichswert x
 [g]  .......................  |1| Wertebereich ganzzahlig

Theta S

Usage:

 Theta_S [sd] [min] [max] [qq] [qp] [qs] [v] [m] [s] [[x]] [[g]]
 [sd]  ...................... Seed: |0| Zeitwert
 [min] ...................... R Minimalwert
 [max] ...................... R Maximalwert
 [qq]  ...................... Theta-Theta:
 [qp]  ...................... Theta P/
 [qs]  ...................... Theta S/
                              |0| Harmonisches Mittel (HM)
                              |1| Arithmetisches Mittel (AM)
                              |2| Summe (SUM)
                              |3| Standardabweichung (SD)
                              |4| Populationsvarianzschaetzung (VAR)
                              |5| Produktsumme(PSM)
                              |6| Geometrisches Mittel(GM)
                              |7| Schrausser's d (D)
                              |8| DvarO (DV)
  [v]  .....................  n zu Theta P (v)
  [m]  .....................  n zu Theta S (m)
  [s]  .....................  n Subpopulationen (s)
  [x]  .....................  Vergleichswert x
  [g]  .....................  |1| Wertebereich ganzzahlig

Verteilungsform

Usage:

 Verteilungsform [min] [max] [n] [s]
  [min] ....................... Minimalwert
  [max] ....................... Maximalwert
  [n] .......... n zu Kennwert Theta=sum(x)
  [s] ................... n Subpopulationen

Verteilungsform_2u

Usage:

  Verteilungsform_2u [min] [max] [q] [n1] [n2] [s] [xd] [g]
  [min] ............... Minimalwert
  [max] ............... Maximalwert
  [q] ................. Theta:
                        |0|................. Harmonisches Mittel
                        |1|................. Arithmetisches Mittel
                        |2|................. Summe
                        |3|................. Standardabweichung
                        |4|................. Populationsvarianzschätzung
                        |5|................. Produktsumme 
                        |6|................. Geometrisches Mittel
                        |7|................. Schrausser's d
                        |8|................. DvarO
  [n] ................. n1 zu Theta
  [n] ................. n2 zu Theta
  [s] ................. n Subpopulationen
  [xd] ................ Vergleichsdifferenzwert
  [g] ................. |1| Wertebereich ganzzahlig

Verteilungsform_kor

Usage:

   Verteilungsform_kor [min] [max] [q] [n] [s] [x]
   [min] ............... Minimalwert
   [max] ............... Maximalwert
   [q] ................. Theta:
                         |1|................. Produktmoment Korrelation
                         |2|................. Kovarianz
                         |3|................. Determinationskoeffizient
                         |4|................. Redundanz
                         |5|................. Regressionskoeffizient ayx
                         |6|................. Regressionskoeffizient byx
                         |7|................. Regressionskoeffizient axy
                         |8|................. Regressionskoeffizient bxy
  [n] .................. n zu Theta
  [s] .................. n Subpopulationen

References

Schrausser, D. G. (2009). ThetaWin: Overview. https://www.academia.edu/81800920

———. (2023a). Schrausser/FunktionWin: Windows Interface for distribution functions (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.7651661

———. (2023b). Schrausser/ThetaWin: Distribution simulator (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.7659264

———. (2024). Handbook: Distribution Functions (Verteilungs Funktionen). PsyArXiv. https://doi.org/10.31234/osf.io/rvzxa