-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
570 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
|
||
import pandas as pd | ||
import numpy as np | ||
import scipy.sparse as sp | ||
import bottleneck as bn | ||
|
||
def get_sparse_matrix(data, user_col, item_col, rating_col): | ||
""" | ||
Creates a sparse user-item interaction matrix from a given pandas DataFrame. | ||
------- | ||
Args: | ||
data (pandas.DataFrame): Dataset capturing user-item interactions. | ||
user_col (str): Column name representing user identifiers. | ||
item_col (str): Column name representing item identifiers. | ||
rating_col (str): Column name denoting the rating or interaction strength. | ||
------- | ||
Returns: | ||
A sparse matrix in Compressed Sparse Row (CSR) format representing the user feedback matrix. | ||
""" | ||
row_indices = data[user_col].cat.codes | ||
col_indices = data[item_col].cat.codes | ||
ratings = data[rating_col] | ||
|
||
R = sp.csr_matrix((ratings, (row_indices, col_indices)), dtype=np.float64) | ||
|
||
return R | ||
|
||
def get_raw_item_ids(df_pp, item_ids_inner): | ||
""" | ||
Convert inner item IDs to their original raw form using the DataFramePreprocessor's item_id_mapping. | ||
------- | ||
Args: | ||
df_pp (recpack.preprocessing.preprocessors.DataFramePreprocessor): A DataFramePreprocessor object from the RecPack library. | ||
item_ids_inner (numpy.array): A NumPy array containing the inner item IDs. | ||
------- | ||
Returns: | ||
A NumPy array of raw item IDs. | ||
""" | ||
item_id_mapping_df = df_pp.item_id_mapping | ||
iid_raw = item_id_mapping_df.columns[0] | ||
|
||
item_ids_raw = item_id_mapping_df[item_id_mapping_df["iid"].isin(item_ids_inner)][iid_raw].values | ||
|
||
return item_ids_raw | ||
|
||
def get_raw_user_ids(df_pp, user_ids_inner): | ||
""" | ||
Convert inner user IDs to their original raw form using the DataFramePreprocessor's user_id_mapping. | ||
------- | ||
Args: | ||
df_pp (recpack.preprocessing.preprocessors.DataFramePreprocessor): A DataFramePreprocessor object from the RecPack library. | ||
user_ids_inner (numpy.array): A NumPy array containing the inner user IDs. | ||
------- | ||
Returns: | ||
A NumPy array of raw user IDs. | ||
""" | ||
user_id_mapping_df = df_pp.user_id_mapping | ||
uid_raw = user_id_mapping_df.columns[0] | ||
|
||
user_ids_raw = user_id_mapping_df[user_id_mapping_df["uid"].isin(user_ids_inner)][uid_raw].values | ||
|
||
return user_ids_raw | ||
|
||
def get_inner_item_ids(df_pp, item_ids_raw): | ||
""" | ||
Convert raw item IDs to their inner form using the DataFramePreprocessor's item_id_mapping. | ||
------- | ||
Args: | ||
df_pp (recpack.preprocessing.preprocessors.DataFramePreprocessor): A DataFramePreprocessor object from the RecPack library. | ||
item_ids_raw (numpy.array): A NumPy array containing the raw item IDs. | ||
------- | ||
Returns: | ||
A NumPy array of inner item IDs. | ||
""" | ||
item_id_mapping_df = df_pp.item_id_mapping | ||
iid_raw = item_id_mapping_df.columns[0] | ||
|
||
item_ids_inner = item_id_mapping_df[item_id_mapping_df[iid_raw].isin(item_ids_raw)]["iid"].values | ||
|
||
return item_ids_inner | ||
|
||
def get_inner_user_ids(df_pp, user_ids_raw): | ||
""" | ||
Convert raw user IDs to their inner form using the DataFramePreprocessor's user_id_mapping. | ||
------- | ||
Args: | ||
df_pp (recpack.preprocessing.preprocessors.DataFramePreprocessor): A DataFramePreprocessor object from the RecPack library. | ||
user_ids_raw (numpy.array): A NumPy array containing the raw user IDs. | ||
------- | ||
Returns: | ||
A NumPy array of inner user IDs. | ||
""" | ||
user_id_mapping_df = df_pp.user_id_mapping | ||
uid_raw = user_id_mapping_df.columns[0] | ||
|
||
user_ids_inner = user_id_mapping_df[user_id_mapping_df[uid_raw].isin(user_ids_raw)]["uid"].values | ||
|
||
return user_ids_inner | ||
|
||
def get_topn_indices(R_hat, n): | ||
""" | ||
Helper function to get sorted indices of top-n items in each row of R_hat. | ||
""" | ||
users = R_hat.shape[0] | ||
|
||
# find the indices that partition the array so that the first n elements are the largest n elements | ||
idx_topn_part = bn.argpartition(-R_hat, n, axis=1) | ||
|
||
# keep only the largest n elements of R_hat | ||
topn_part = R_hat[np.arange(users)[:, np.newaxis], idx_topn_part[:, :n]] | ||
|
||
# find the indeces of the sorted top-n predicted relevance scores in R_hat | ||
idx_part = np.argsort(-topn_part, axis=1) | ||
idx_topn = idx_topn_part[np.arange(users)[:, np.newaxis], idx_part] | ||
|
||
return idx_topn |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
|
||
import numpy as np | ||
import bottleneck as bn | ||
|
||
from src.helper_functions.data_formatting import * | ||
|
||
def recall_at_n(R_hat,R_held,n): | ||
""" | ||
Computes the Recall at the given value of n. | ||
This metric does not take the rank of recommended items into account. | ||
Only for usage with binary feedback data. | ||
------- | ||
Args: | ||
R_hat (numpy.ndarray): The estimated user feedback matrix with -np.inf marking entries used as model input. | ||
R_held (sparse matrix): The held out user feedback matrix. | ||
n (int): The number of items to consider in the ranking. | ||
------- | ||
Returns: | ||
recall_mean (flt): The mean Recall@N across users. | ||
recall_std (flt): The standard deviation of Recall@N across users. | ||
""" | ||
|
||
users = R_hat.shape[0] | ||
|
||
# find the indices that partition the array so that the first n elements are the largest n elements | ||
idx = bn.argpartition(-R_hat, n, axis=1) | ||
|
||
R_hat_binary = np.zeros_like(R_hat, dtype=bool) | ||
R_hat_binary[np.arange(users)[:, np.newaxis], idx[:, :n]] = True | ||
|
||
R_held_binary = (R_held > 0).toarray() | ||
|
||
# recall@N for each user | ||
recall = (np.logical_and(R_held_binary, R_hat_binary).sum(axis=1)).astype(np.float32) / np.minimum(n, R_held_binary.sum(axis=1)) | ||
|
||
recall_mean = np.mean(recall); recall_std = np.std(recall) | ||
|
||
return recall_mean, recall_std | ||
|
||
def tndcg_at_n(R_hat,R_held,n): | ||
""" | ||
Computes the truncated Normalized Discounted Cumulative Gain (NDCG) at the given value of n. | ||
A score of 1 is achieved when dcg = idcg (ideal dcg). | ||
Only for usage with binary feedback data. | ||
------- | ||
Args: | ||
R_hat (numpy.ndarray): The estimated user feedback matrix with -np.inf marking entries used as model input. | ||
R_held (sparse matrix): The held out user feedback matrix. | ||
n (int): The number of items to consider in the ranking. | ||
------- | ||
Returns: | ||
tndcg_mean (flt): The mean truncated NDCG@N across users. | ||
tndcg_std (flt): The standard deviation of truncated NDCG@N across users. | ||
""" | ||
|
||
users = R_hat.shape[0] | ||
|
||
# find the indeces of the sorted top-n predicted relevance scores in R_hat | ||
idx_topn = get_topn_indices(R_hat, n) | ||
|
||
tp = 1. / np.log2(np.arange(2, n + 2)) | ||
dcg = (R_held[np.arange(users)[:, np.newaxis], idx_topn].toarray() * tp).sum(axis=1) | ||
idcg = np.array([(tp[:min(i, n)]).sum() for i in R_held.getnnz(axis=1)]) | ||
tndcg = dcg / idcg | ||
|
||
tndcg_mean = np.mean(tndcg); tndcg_std = np.std(tndcg) | ||
|
||
return tndcg_mean, tndcg_std |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
|
||
import numpy as np | ||
|
||
from src.helper_functions.data_formatting import * | ||
|
||
def coverage(R_hat, item_ids, n): | ||
""" | ||
Coverage quantifies the proportion of items that are recommended out of the specified item set. | ||
It is a metric indicative of the system's ability to diversify its recommendations. | ||
A score close to 1 denotes higher diversity, suggesting that the system effectively recommends a vast array of items to users. | ||
------- | ||
Args: | ||
R_hat (numpy.ndarray): The estimated user feedback matrix with -np.inf marking entries used as model input. | ||
item_ids (lst): A list of item IDs for which to compute the coverage. | ||
n (int): The number of items to consider in the ranking. | ||
------- | ||
Returns: | ||
coverage (flt): The total coverage score. | ||
""" | ||
|
||
# find the indices of the sorted top-n predicted relevance scores in R_hat | ||
idx_topn = get_topn_indices(R_hat, n) | ||
flat_topn = idx_topn.flatten() | ||
|
||
item_counts = {item_id: np.count_nonzero(flat_topn == item_id) for item_id in item_ids} # count frequency of each item ID | ||
item_counts = np.array(list(item_counts.values())) | ||
coverage = sum(np.minimum(1, item_counts)) / len(item_ids) | ||
|
||
return coverage | ||
|
||
def u_parity_at_n(R_hat, protected_users, items_dict, n): | ||
""" | ||
Computes the u-parity@N score. | ||
The User-coverage Parity metric measures the average disparity between the proportions of protected | ||
and non-protected users receiving recommendations from each category. | ||
------- | ||
Args: | ||
R_hat (numpy.ndarray): The estimated user feedback matrix with -np.inf marking entries used as model input. | ||
protected_users (numpy.ndarray): A binary array where 1 indicates a user is part of the protected group and 0 otherwise. | ||
items_dict (dict): A dictionary mapping item categories to their corresponding item IDs. | ||
n (int): The number of items to consider in the ranking. | ||
------- | ||
Returns: | ||
u_parity (flt): The u-parity@N score. | ||
std_dev (flt): The standard deviation of the differences across item categories. | ||
""" | ||
|
||
# get top-n indices for all users | ||
idx_topn = get_topn_indices(R_hat, n) | ||
|
||
# compute the number of protected and non-protected users once | ||
num_protected_users = sum(protected_users) | ||
num_non_protected_users = len(protected_users) - num_protected_users | ||
|
||
differences = [] | ||
for _, item_ids in items_dict.items(): | ||
count_protected_users = 0; count_non_protected_users = 0 | ||
for i, is_protected in enumerate(protected_users): | ||
if np.isin(idx_topn[i], item_ids).sum() > 0: | ||
if is_protected: | ||
count_protected_users += 1 | ||
else: | ||
count_non_protected_users += 1 | ||
|
||
# normalize the number of recommendations by the total number of users in each group | ||
prop_protected_users = count_protected_users / num_protected_users | ||
prop_non_protected_users = count_non_protected_users / num_non_protected_users | ||
|
||
differences.append(abs(prop_non_protected_users - prop_protected_users)) | ||
|
||
u_parity = np.mean(differences); std_dev = np.std(differences) | ||
|
||
return u_parity, std_dev | ||
|
||
def apcr_at_n(R_hat, items_dict, n): | ||
""" | ||
Computes the apcr@N score. | ||
This metric measures the average rate at which providers are covered in the recommendation lists for a set of users. | ||
------- | ||
Args: | ||
R_hat (numpy.ndarray): The estimated user feedback matrix with -np.inf marking entries used as model input. | ||
items_dict (dict): A dictionary mapping providers to their corresponding item IDs. | ||
n (int): The number of items to consider in the ranking. | ||
------- | ||
Returns: | ||
apcr (flt): The apcr@N score. | ||
------- | ||
Reference: | ||
Weiwen Liu and Robinn Burke | ||
Personalizing Fairness-aware Re-ranking. FATREC Workshop on Responsible Recommendation 2018 | ||
""" | ||
|
||
# reverse the items_dict to map item IDs to provider IDs | ||
providers_dict = {item: provider for provider, items in items_dict.items() for item in items} | ||
|
||
idx_topn = get_topn_indices(R_hat, n) | ||
|
||
count_providers = [] | ||
for user_row in idx_topn: | ||
user_providers = set(providers_dict.get(item) for item in user_row) | ||
count_providers.append(len(user_providers)) | ||
|
||
apcr = np.mean(count_providers) / len(items_dict) | ||
|
||
return apcr |
Oops, something went wrong.