Skip to content

Source code for M.T. Hoang, B. Yuen, X. Dong, T. Lu, R. Westendorp and K. Reddy, “Recurrent Neural Networks for Accurate RSSI Indoor Localization,” IEEE Internet of Things Journal, 2019

License

Notifications You must be signed in to change notification settings

SensorOrgNet/Recurrent_Neural_Networks_for_Accurate_RSSI_Indoor_Localization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Recurrent Neural Networks for Accurate RSSI Indoor Localization

Source code for M.T. Hoang, B. Yuen, X. Dong, T. Lu, R. Westendorp and K. Reddy, “Recurrent Neural Networks for Accurate RSSI Indoor Localization,” IEEE Internet of Things Journal, 2019

Folder Structure

  • Step1_FilterDatabase.m: Filter the database with Average Weighted Filter or Mean Filter
  • Step2_Create_RandomTraj.m: Generate random training trajectories under the constraints that the distance between consecutive locations is bounded by the maximum distance a user can travel within the sample interval in practical scenarios.
  • Step2_CreateInputTraining_Model5: Create the input training data for P-MIMO LSTM
  • RNN models training code (Using Keras and Tensorflow)
    • LSTM_Model_1.py
    • LSTM_Model_2.py
    • LSTM_Model_3.py
    • LSTM_Model_4.py
    • LSTM_Model_5.py