This repository implement conditional diffusion model from scratch and train it on the MNIST-M dataset. Given conditional labels 0-9, and generate the corresponding digit images.
Generated from MNIST
# of data: 44,800 / 11,200 (training/validation)
# of classes: 10 (0~9)
A subset of MNIST - The digit images are normalized (and centered) in size 28 * 28 * 3 pixels
python train.py --data_root $data_directory
bash download.sh
python sampling.py --out_dir $output_directory --checkpoint $checkpoint_directory
Fig 1: (0-9) generate images
(a) t=0 (b) t=80 (c) t=160 (d) t=240 (e) t=320 (f) t=400
Figure 2: First ’0’ in different time steps
Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models."
dome272/Diffusion-Models-pytorch