Skip to content

Commit

Permalink
merge discrim into discrim-final, set as new branch
Browse files Browse the repository at this point in the history
  • Loading branch information
vivekvjk committed Jan 3, 2024
2 parents b2c2654 + 9aa6761 commit 92b576a
Show file tree
Hide file tree
Showing 30 changed files with 1,504 additions and 262 deletions.
2 changes: 1 addition & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -221,4 +221,4 @@ tools/exps/mmv1/mmHRDA.sh
tools/exps/mmv3/mmv3RGB.sh
tools/exps/sourceEval/sourceEval.sh
tools/exps/sourceEval/sourceEval2.sh
tools/exps
testing/
129 changes: 129 additions & 0 deletions configs/_base_/datasets/source_BDDSeq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# dataset settings
FRAME_OFFSET = -2
dataset_type = 'BDDSeqDataset'
bdd_data_root = '/coc/flash9/datasets/bdd100k/videoda-subset'

# Backward
bdd_train_flow_dir= "/coc/flash9/datasets/bdd100k_flow/t_t-1/frame_dist_2/backward/train/images"
bdd_val_flow_dir = "/coc/flash9/datasets/bdd100k_flow/t_t-1/frame_dist_2/backward/val/images"

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

crop_size = (720, 720)
ignore_index = [5, 3, 16, 12, 201, 255] # viper
# ignore_index = [3, 4, 9, 14, 15, 16, 17, 18, 201, 255] # synthia


bdd_train_pipeline = {
"im_load_pipeline": [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
],
"load_no_ann_pipeline": [
dict(type='LoadImageFromFile'),
],
"load_flow_pipeline": [
dict(type='LoadFlowFromFile'),
],
"shared_pipeline": [
dict(type='Resize', img_scale=(1280, 720)), # not sure since bdd is 720 x 1280
dict(type='RandomCrop', crop_size=crop_size),
dict(type='RandomFlip', prob=0.5),
],
"im_pipeline": [
# dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
# dict(type='DefaultFormatBundle'),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
],
"flow_pipeline": [
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
}

test_pipeline = {
"im_load_pipeline": [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
],
"load_no_ann_pipeline": [
dict(type='LoadImageFromFile'),
],
"load_flow_pipeline": [
dict(type='LoadFlowFromFile'),
],
"shared_pipeline": [
dict(type='Resize', keep_ratio=True, img_scale=(1280, 720)),
# dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.0),
],
"im_pipeline": [
# dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
# dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
# dict(type='DefaultFormatBundle'),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])#, meta_keys=[]),
],
"flow_pipeline": [
# dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'), #I don't know what this is
dict(type='Collect', keys=['img', 'gt_semantic_seg'])#, meta_keys=[]),
]
}


data = dict(
train=dict(
type='UDADataset',
source=dict(
type='BDDSeqDataset',
data_root=bdd_data_root,
img_dir='train_orig_10k/images',
ann_dir='train_orig_10k/labels',
split='splits/valid_imgs_train.txt',
pipeline=bdd_train_pipeline,
frame_offset=FRAME_OFFSET,
flow_dir=bdd_train_flow_dir,
ignore_index=ignore_index,
),
target=dict(
type='BDDSeqDataset',
data_root=bdd_data_root,
img_dir='train_orig_10k/images',
ann_dir='train_orig_10k/labels',
split='splits/valid_imgs_train.txt',
pipeline=bdd_train_pipeline,
frame_offset=FRAME_OFFSET,
flow_dir=bdd_train_flow_dir,
ignore_index=ignore_index,
)
),
val=dict(
type='BDDSeqDataset',
data_root=bdd_data_root,
img_dir='val_orig_10k/images',
ann_dir='val_orig_10k/labels',
split='splits/valid_imgs_val.txt',
pipeline=test_pipeline,
frame_offset=FRAME_OFFSET,
flow_dir=bdd_val_flow_dir,
ignore_index=ignore_index
),
test=dict(
type='BDDSeqDataset',
data_root=bdd_data_root,
img_dir='val_orig_10k/images',
ann_dir='val_orig_10k/labels',
split='splits/valid_imgs_val.txt',
pipeline=test_pipeline,
frame_offset=FRAME_OFFSET,
flow_dir=bdd_val_flow_dir,
ignore_index=ignore_index
)
)
161 changes: 161 additions & 0 deletions configs/_base_/datasets/uda_synthiaSeq_BDDSeq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
# dataset settings
FRAME_OFFSET = -2
dataset_type = 'SynthiaSeqDataset'
synthia_data_root = '/srv/share4/datasets/SynthiaSeq/SYNTHIA-SEQS-04-DAWN'
bdd_data_root = '/coc/flash9/datasets/bdd100k/videoda-subset'

synthia_train_flow_dir = '/srv/share4/datasets/SynthiaSeq_Flow/frame_dist_1/forward/train/RGB/Stereo_Left/Omni_F'

# Backward
bdd_train_flow_dir= "/coc/flash9/datasets/bdd100k_flow/t_t-1/frame_dist_2/backward/train/images"
bdd_val_flow_dir = "/coc/flash9/datasets/bdd100k_flow/t_t-1/frame_dist_2/backward/val_orig_10k/images"

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

crop_size = (720, 720)
ignore_index = [3, 4, 9, 14, 15, 16, 17, 18, 201, 255]

synthia_train_pipeline = {
"im_load_pipeline": [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
],
"load_no_ann_pipeline": [
dict(type='LoadImageFromFile'),
],
"load_flow_pipeline": [
dict(type='LoadFlowFromFile'),
],
"shared_pipeline": [
dict(type='Resize', img_scale=(2560, 1520)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
],
"im_pipeline": [
# dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
# dict(type='DefaultFormatBundle'), #I'm not sure why I had to comment it for im, but not for flow.
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
],
"flow_pipeline": [
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'), #I don't know what this is
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
}


bdd_train_pipeline = {
"im_load_pipeline": [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
],
"load_no_ann_pipeline": [
dict(type='LoadImageFromFile'),
],
"load_flow_pipeline": [
dict(type='LoadFlowFromFile'),
],
"shared_pipeline": [
dict(type='Resize', img_scale=(1280, 720)), # not sure since bdd is 720 x 1280
dict(type='RandomCrop', crop_size=crop_size),
dict(type='RandomFlip', prob=0.5),
],
"im_pipeline": [
# dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
# dict(type='DefaultFormatBundle'),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
],
"flow_pipeline": [
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
}

test_pipeline = {
"im_load_pipeline": [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
],
"load_no_ann_pipeline": [
dict(type='LoadImageFromFile'),
],
"load_flow_pipeline": [
dict(type='LoadFlowFromFile'),
],
"shared_pipeline": [
dict(type='Resize', keep_ratio=True, img_scale=(1280, 720)),
# dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.0),
],
"im_pipeline": [
# dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
# dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
# dict(type='DefaultFormatBundle'),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])#, meta_keys=[]),
],
"flow_pipeline": [
# dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'), #I don't know what this is
dict(type='Collect', keys=['img', 'gt_semantic_seg'])#, meta_keys=[]),
]
}


data = dict(
train=dict(
type='UDADataset',
source=dict(
type='SynthiaSeqDataset',
data_root=synthia_data_root,
img_dir='RGB/Stereo_Left/Omni_F',
ann_dir='GT/LABELS/Stereo_Left/Omni_F',
split='splits/flow/forward/train.txt',
pipeline=synthia_train_pipeline,
frame_offset=1,
flow_dir=synthia_train_flow_dir,
),
target=dict(
type='BDDSeqDataset',
data_root=bdd_data_root,
img_dir='train/images',
ann_dir='train/labels',
split='splits/valid_imgs_train.txt',
pipeline=bdd_train_pipeline,
frame_offset=FRAME_OFFSET,
flow_dir=bdd_train_flow_dir,
ignore_index=ignore_index,
)
),
val=dict(
type='BDDSeqDataset',
data_root=bdd_data_root,
img_dir='val_orig_10k/images',
ann_dir='val_orig_10k/labels',
split='splits/valid_imgs_val.txt',
pipeline=test_pipeline,
frame_offset=FRAME_OFFSET,
flow_dir=bdd_val_flow_dir,
ignore_index=ignore_index
),
test=dict(
type='BDDSeqDataset',
data_root=bdd_data_root,
img_dir='val_orig_10k/images',
ann_dir='val_orig_10k/labels',
split='splits/valid_imgs_val.txt',
pipeline=test_pipeline,
frame_offset=FRAME_OFFSET,
flow_dir=bdd_val_flow_dir,
ignore_index=ignore_index
)
)
Loading

0 comments on commit 92b576a

Please sign in to comment.