-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
merge discrim into discrim-final, set as new branch
- Loading branch information
Showing
30 changed files
with
1,504 additions
and
262 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
# dataset settings | ||
FRAME_OFFSET = -2 | ||
dataset_type = 'BDDSeqDataset' | ||
bdd_data_root = '/coc/flash9/datasets/bdd100k/videoda-subset' | ||
|
||
# Backward | ||
bdd_train_flow_dir= "/coc/flash9/datasets/bdd100k_flow/t_t-1/frame_dist_2/backward/train/images" | ||
bdd_val_flow_dir = "/coc/flash9/datasets/bdd100k_flow/t_t-1/frame_dist_2/backward/val/images" | ||
|
||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
|
||
crop_size = (720, 720) | ||
ignore_index = [5, 3, 16, 12, 201, 255] # viper | ||
# ignore_index = [3, 4, 9, 14, 15, 16, 17, 18, 201, 255] # synthia | ||
|
||
|
||
bdd_train_pipeline = { | ||
"im_load_pipeline": [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
], | ||
"load_no_ann_pipeline": [ | ||
dict(type='LoadImageFromFile'), | ||
], | ||
"load_flow_pipeline": [ | ||
dict(type='LoadFlowFromFile'), | ||
], | ||
"shared_pipeline": [ | ||
dict(type='Resize', img_scale=(1280, 720)), # not sure since bdd is 720 x 1280 | ||
dict(type='RandomCrop', crop_size=crop_size), | ||
dict(type='RandomFlip', prob=0.5), | ||
], | ||
"im_pipeline": [ | ||
# dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
# dict(type='DefaultFormatBundle'), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']), | ||
], | ||
"flow_pipeline": [ | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']), | ||
] | ||
} | ||
|
||
test_pipeline = { | ||
"im_load_pipeline": [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
], | ||
"load_no_ann_pipeline": [ | ||
dict(type='LoadImageFromFile'), | ||
], | ||
"load_flow_pipeline": [ | ||
dict(type='LoadFlowFromFile'), | ||
], | ||
"shared_pipeline": [ | ||
dict(type='Resize', keep_ratio=True, img_scale=(1280, 720)), | ||
# dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | ||
dict(type='RandomFlip', prob=0.0), | ||
], | ||
"im_pipeline": [ | ||
# dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
# dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
# dict(type='DefaultFormatBundle'), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg'])#, meta_keys=[]), | ||
], | ||
"flow_pipeline": [ | ||
# dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='DefaultFormatBundle'), #I don't know what this is | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg'])#, meta_keys=[]), | ||
] | ||
} | ||
|
||
|
||
data = dict( | ||
train=dict( | ||
type='UDADataset', | ||
source=dict( | ||
type='BDDSeqDataset', | ||
data_root=bdd_data_root, | ||
img_dir='train_orig_10k/images', | ||
ann_dir='train_orig_10k/labels', | ||
split='splits/valid_imgs_train.txt', | ||
pipeline=bdd_train_pipeline, | ||
frame_offset=FRAME_OFFSET, | ||
flow_dir=bdd_train_flow_dir, | ||
ignore_index=ignore_index, | ||
), | ||
target=dict( | ||
type='BDDSeqDataset', | ||
data_root=bdd_data_root, | ||
img_dir='train_orig_10k/images', | ||
ann_dir='train_orig_10k/labels', | ||
split='splits/valid_imgs_train.txt', | ||
pipeline=bdd_train_pipeline, | ||
frame_offset=FRAME_OFFSET, | ||
flow_dir=bdd_train_flow_dir, | ||
ignore_index=ignore_index, | ||
) | ||
), | ||
val=dict( | ||
type='BDDSeqDataset', | ||
data_root=bdd_data_root, | ||
img_dir='val_orig_10k/images', | ||
ann_dir='val_orig_10k/labels', | ||
split='splits/valid_imgs_val.txt', | ||
pipeline=test_pipeline, | ||
frame_offset=FRAME_OFFSET, | ||
flow_dir=bdd_val_flow_dir, | ||
ignore_index=ignore_index | ||
), | ||
test=dict( | ||
type='BDDSeqDataset', | ||
data_root=bdd_data_root, | ||
img_dir='val_orig_10k/images', | ||
ann_dir='val_orig_10k/labels', | ||
split='splits/valid_imgs_val.txt', | ||
pipeline=test_pipeline, | ||
frame_offset=FRAME_OFFSET, | ||
flow_dir=bdd_val_flow_dir, | ||
ignore_index=ignore_index | ||
) | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# dataset settings | ||
FRAME_OFFSET = -2 | ||
dataset_type = 'SynthiaSeqDataset' | ||
synthia_data_root = '/srv/share4/datasets/SynthiaSeq/SYNTHIA-SEQS-04-DAWN' | ||
bdd_data_root = '/coc/flash9/datasets/bdd100k/videoda-subset' | ||
|
||
synthia_train_flow_dir = '/srv/share4/datasets/SynthiaSeq_Flow/frame_dist_1/forward/train/RGB/Stereo_Left/Omni_F' | ||
|
||
# Backward | ||
bdd_train_flow_dir= "/coc/flash9/datasets/bdd100k_flow/t_t-1/frame_dist_2/backward/train/images" | ||
bdd_val_flow_dir = "/coc/flash9/datasets/bdd100k_flow/t_t-1/frame_dist_2/backward/val_orig_10k/images" | ||
|
||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
|
||
crop_size = (720, 720) | ||
ignore_index = [3, 4, 9, 14, 15, 16, 17, 18, 201, 255] | ||
|
||
synthia_train_pipeline = { | ||
"im_load_pipeline": [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
], | ||
"load_no_ann_pipeline": [ | ||
dict(type='LoadImageFromFile'), | ||
], | ||
"load_flow_pipeline": [ | ||
dict(type='LoadFlowFromFile'), | ||
], | ||
"shared_pipeline": [ | ||
dict(type='Resize', img_scale=(2560, 1520)), | ||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | ||
dict(type='RandomFlip', prob=0.5), | ||
], | ||
"im_pipeline": [ | ||
# dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
# dict(type='DefaultFormatBundle'), #I'm not sure why I had to comment it for im, but not for flow. | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']), | ||
], | ||
"flow_pipeline": [ | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='DefaultFormatBundle'), #I don't know what this is | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']), | ||
] | ||
} | ||
|
||
|
||
bdd_train_pipeline = { | ||
"im_load_pipeline": [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
], | ||
"load_no_ann_pipeline": [ | ||
dict(type='LoadImageFromFile'), | ||
], | ||
"load_flow_pipeline": [ | ||
dict(type='LoadFlowFromFile'), | ||
], | ||
"shared_pipeline": [ | ||
dict(type='Resize', img_scale=(1280, 720)), # not sure since bdd is 720 x 1280 | ||
dict(type='RandomCrop', crop_size=crop_size), | ||
dict(type='RandomFlip', prob=0.5), | ||
], | ||
"im_pipeline": [ | ||
# dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
# dict(type='DefaultFormatBundle'), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']), | ||
], | ||
"flow_pipeline": [ | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']), | ||
] | ||
} | ||
|
||
test_pipeline = { | ||
"im_load_pipeline": [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
], | ||
"load_no_ann_pipeline": [ | ||
dict(type='LoadImageFromFile'), | ||
], | ||
"load_flow_pipeline": [ | ||
dict(type='LoadFlowFromFile'), | ||
], | ||
"shared_pipeline": [ | ||
dict(type='Resize', keep_ratio=True, img_scale=(1280, 720)), | ||
# dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | ||
dict(type='RandomFlip', prob=0.0), | ||
], | ||
"im_pipeline": [ | ||
# dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
# dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
# dict(type='DefaultFormatBundle'), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg'])#, meta_keys=[]), | ||
], | ||
"flow_pipeline": [ | ||
# dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='DefaultFormatBundle'), #I don't know what this is | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg'])#, meta_keys=[]), | ||
] | ||
} | ||
|
||
|
||
data = dict( | ||
train=dict( | ||
type='UDADataset', | ||
source=dict( | ||
type='SynthiaSeqDataset', | ||
data_root=synthia_data_root, | ||
img_dir='RGB/Stereo_Left/Omni_F', | ||
ann_dir='GT/LABELS/Stereo_Left/Omni_F', | ||
split='splits/flow/forward/train.txt', | ||
pipeline=synthia_train_pipeline, | ||
frame_offset=1, | ||
flow_dir=synthia_train_flow_dir, | ||
), | ||
target=dict( | ||
type='BDDSeqDataset', | ||
data_root=bdd_data_root, | ||
img_dir='train/images', | ||
ann_dir='train/labels', | ||
split='splits/valid_imgs_train.txt', | ||
pipeline=bdd_train_pipeline, | ||
frame_offset=FRAME_OFFSET, | ||
flow_dir=bdd_train_flow_dir, | ||
ignore_index=ignore_index, | ||
) | ||
), | ||
val=dict( | ||
type='BDDSeqDataset', | ||
data_root=bdd_data_root, | ||
img_dir='val_orig_10k/images', | ||
ann_dir='val_orig_10k/labels', | ||
split='splits/valid_imgs_val.txt', | ||
pipeline=test_pipeline, | ||
frame_offset=FRAME_OFFSET, | ||
flow_dir=bdd_val_flow_dir, | ||
ignore_index=ignore_index | ||
), | ||
test=dict( | ||
type='BDDSeqDataset', | ||
data_root=bdd_data_root, | ||
img_dir='val_orig_10k/images', | ||
ann_dir='val_orig_10k/labels', | ||
split='splits/valid_imgs_val.txt', | ||
pipeline=test_pipeline, | ||
frame_offset=FRAME_OFFSET, | ||
flow_dir=bdd_val_flow_dir, | ||
ignore_index=ignore_index | ||
) | ||
) |
Oops, something went wrong.