-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of https://github.com/SonyShrestha/VBP_Joint_Project
- Loading branch information
Showing
6 changed files
with
175 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
Binary file added
BIN
+166 KB
...siness_review.parquet/part-00000-0d37f6ca-a9df-4e87-9d97-d9bc52f03032-c000.snappy.parquet
Binary file not shown.
Empty file.
Binary file added
BIN
+175 KB
...stomer_review.parquet/part-00000-ed687f74-d008-47d7-8700-18149f4a0265-c000.snappy.parquet
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
import logging | ||
import os | ||
import configparser | ||
import json | ||
from pyspark.sql import SparkSession | ||
from datetime import datetime | ||
from pyspark.sql.functions import udf, monotonically_increasing_id, col, regexp_replace, lit,from_unixtime | ||
|
||
# Configure logging | ||
logging.basicConfig(level=logging.INFO) # Set log level to INFO | ||
|
||
# Create logger object | ||
logger = logging.getLogger() | ||
|
||
# Get base directory | ||
root_dir = os.path.abspath(os.path.join(os.getcwd())) | ||
|
||
# Specify the path to config file | ||
config_file_path = os.path.join(root_dir, "config.ini") | ||
config = configparser.ConfigParser() | ||
config.read(config_file_path) | ||
|
||
config_file_path_json = os.path.join(root_dir, "config.json") | ||
with open(config_file_path_json) as f: | ||
config_json = json.load(f) | ||
|
||
|
||
if __name__ == "__main__": | ||
gcs_config = config["GCS"]["credentials_path"] | ||
raw_bucket_name = config["GCS"]["raw_bucket_name"] | ||
formatted_bucket_name = config["GCS"]["formatted_bucket_name"] | ||
exploitation_bucket_name = config["GCS"]["exploitation_bucket_name"] | ||
project_id = config['BIGQUERY']['project_id'] | ||
dataset_id = config['BIGQUERY']['dataset_id'] | ||
|
||
|
||
spark = SparkSession.builder \ | ||
.appName("Customer Fact table creation") \ | ||
.config("spark.driver.host", "127.0.0.1") \ | ||
.config("spark.hadoop.fs.gs.impl", "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem") \ | ||
.config("spark.hadoop.fs.AbstractFileSystem.gs.impl", "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFS") \ | ||
.config('spark.jars', '/home/pce/Documents/VBP_Joint_Project-main/spark-bigquery-with-dependencies_2.12-0.27.0.jar') \ | ||
.config("spark.hadoop.google.cloud.auth.service.account.enable", "true") \ | ||
.config("spark.hadoop.google.cloud.auth.service.account.json.keyfile", gcs_config) \ | ||
.config("temporaryGcsBucket", raw_bucket_name) \ | ||
.config("parentProject", project_id) \ | ||
.config("project", project_id) \ | ||
.getOrCreate() | ||
|
||
|
||
logger.info('-----------------------------------------------------') | ||
logger.info("Creating business review fact table") | ||
|
||
exploitation_zone_parquet_file_path = os.path.join(root_dir, 'data', 'exploitation_zone') | ||
|
||
# Read the Parquet file into a DataFrame from GCS Bucket | ||
business_purchase_df = spark.read.parquet(exploitation_zone_parquet_file_path, 'supermarket_products.parquet') | ||
cust_purchase_df = spark.read.parquet(exploitation_zone_parquet_file_path, 'customer_purchase.parquet') | ||
dim_product_df = spark.read.parquet(os.path.join(exploitation_zone_parquet_file_path, 'dim_product.parquet')) | ||
dim_customer_df = spark.read.parquet(os.path.join(exploitation_zone_parquet_file_path, 'dim_customer.parquet')) | ||
|
||
business_sentiment_df = spark.read.parquet(exploitation_zone_parquet_file_path, 'business_sentiment.parquet') | ||
business_sentiment_df = business_sentiment_df.withColumnRenamed("business_name", "store_name") | ||
|
||
|
||
fact_business_sentiment_df = business_purchase_df.join(business_sentiment_df, 'store_name', 'inner').select(business_purchase_df['store_id'], business_purchase_df['product_id'], | ||
business_purchase_df['product_name'], business_sentiment_df['date'], | ||
business_sentiment_df['sentiment_label'],business_sentiment_df['sentiment_score'], | ||
) | ||
|
||
fact_business_sentiment_df = fact_business_sentiment_df.withColumn("date", regexp_replace("date", "-", "")).withColumnRenamed("date", "date_id") | ||
# fact_business_sentiment_df = fact_business_sentiment_df.join(cust_purchase_df, 'product_name', 'inner').select(fact_business_sentiment_df['*'], cust_purchase_df['customer_id']) | ||
fact_business_sentiment_df = fact_business_sentiment_df.withColumn("review_id", monotonically_increasing_id() + 10000) | ||
fact_business_sentiment_df = fact_business_sentiment_df.withColumn("created_on",lit(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))) # Add created_on | ||
fact_business_sentiment_df = fact_business_sentiment_df.select("review_id", "store_id", "product_id", "date_id", "sentiment_label", "sentiment_score", "created_on") | ||
|
||
fact_business_sentiment_df.show() | ||
fact_business_sentiment_df.printSchema() | ||
|
||
|
||
fact_business_sentiment_df.write \ | ||
.format('bigquery') \ | ||
.option('table', f'{project_id}:{dataset_id}.fact_business_review') \ | ||
.mode('overwrite') \ | ||
.save() | ||
|
||
# fact_customer_inventory_df.write.mode('overwrite').parquet(os.path.join(exploitation_zone_parquet_file_path, 'fact_customer_inventory.parquet')) | ||
fact_business_sentiment_df.write.mode('overwrite').parquet(f'/home/pce/Documents/VBP_Joint_Project-main/data/exploitation_zone/fact_business_review.parquet') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
import logging | ||
import os | ||
import configparser | ||
import json | ||
from pyspark.sql import SparkSession | ||
from datetime import datetime | ||
from pyspark.sql.functions import udf, monotonically_increasing_id, col, regexp_replace, lit,from_unixtime | ||
|
||
# Configure logging | ||
logging.basicConfig(level=logging.INFO) # Set log level to INFO | ||
|
||
# Create logger object | ||
logger = logging.getLogger() | ||
|
||
# Get base directory | ||
root_dir = os.path.abspath(os.path.join(os.getcwd())) | ||
|
||
# Specify the path to config file | ||
config_file_path = os.path.join(root_dir, "config.ini") | ||
config = configparser.ConfigParser() | ||
config.read(config_file_path) | ||
|
||
config_file_path_json = os.path.join(root_dir, "config.json") | ||
with open(config_file_path_json) as f: | ||
config_json = json.load(f) | ||
|
||
|
||
if __name__ == "__main__": | ||
gcs_config = config["GCS"]["credentials_path"] | ||
raw_bucket_name = config["GCS"]["raw_bucket_name"] | ||
formatted_bucket_name = config["GCS"]["formatted_bucket_name"] | ||
exploitation_bucket_name = config["GCS"]["exploitation_bucket_name"] | ||
project_id = config['BIGQUERY']['project_id'] | ||
dataset_id = config['BIGQUERY']['dataset_id'] | ||
|
||
|
||
spark = SparkSession.builder \ | ||
.appName("Customer Fact table creation") \ | ||
.config("spark.driver.host", "127.0.0.1") \ | ||
.config("spark.hadoop.fs.gs.impl", "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem") \ | ||
.config("spark.hadoop.fs.AbstractFileSystem.gs.impl", "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFS") \ | ||
.config('spark.jars', '/home/pce/Documents/VBP_Joint_Project-main/spark-bigquery-with-dependencies_2.12-0.27.0.jar') \ | ||
.config("spark.hadoop.google.cloud.auth.service.account.enable", "true") \ | ||
.config("spark.hadoop.google.cloud.auth.service.account.json.keyfile", gcs_config) \ | ||
.config("temporaryGcsBucket", raw_bucket_name) \ | ||
.config("parentProject", project_id) \ | ||
.config("project", project_id) \ | ||
.getOrCreate() | ||
|
||
|
||
logger.info('-----------------------------------------------------') | ||
logger.info("Creating business review fact table") | ||
|
||
exploitation_zone_parquet_file_path = os.path.join(root_dir, 'data', 'exploitation_zone') | ||
|
||
# Read the Parquet file into a DataFrame from GCS Bucket | ||
cust_purchase_df = spark.read.parquet(os.path.join(exploitation_zone_parquet_file_path, 'customer_purchase.parquet')) | ||
dim_product_df = spark.read.parquet(os.path.join(exploitation_zone_parquet_file_path, 'dim_product.parquet')) | ||
dim_customer_df = spark.read.parquet(os.path.join(exploitation_zone_parquet_file_path, 'dim_customer.parquet')) | ||
|
||
customer_sentiment_df = spark.read.parquet(os.path.join(exploitation_zone_parquet_file_path, 'customer_sentiment.parquet')) | ||
customer_sentiment_df = customer_sentiment_df.withColumnRenamed("user_name", "customer_name") | ||
|
||
|
||
fact_customer_sentiment_df = cust_purchase_df.join(customer_sentiment_df, 'customer_name', 'inner').select(cust_purchase_df['customer_id'], | ||
cust_purchase_df['product_name'], | ||
customer_sentiment_df['sentiment_label'],customer_sentiment_df['sentiment_score'], | ||
cust_purchase_df['purchase_date']) | ||
|
||
fact_customer_sentiment_df = fact_customer_sentiment_df.withColumn("purchase_date", regexp_replace("purchase_date", "-", "")).withColumnRenamed("purchase_date", "date_id") | ||
fact_customer_sentiment_df = fact_customer_sentiment_df.join(dim_product_df, 'product_name', 'inner').select(fact_customer_sentiment_df['*'], dim_product_df['product_id']) | ||
fact_customer_sentiment_df = fact_customer_sentiment_df.withColumn("review_id", monotonically_increasing_id() + 20000) | ||
fact_customer_sentiment_df = fact_customer_sentiment_df.withColumn("created_on",lit(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))) # Add created_on | ||
fact_customer_sentiment_df = fact_customer_sentiment_df.select("review_id", "customer_id", "product_id", "date_id", "sentiment_label", "sentiment_score", "created_on") | ||
|
||
fact_customer_sentiment_df.show() | ||
fact_customer_sentiment_df.printSchema() | ||
|
||
|
||
fact_customer_sentiment_df.write \ | ||
.format('bigquery') \ | ||
.option('table', f'{project_id}:{dataset_id}.fact_customer_review') \ | ||
.mode('overwrite') \ | ||
.save() | ||
|
||
# fact_customer_inventory_df.write.mode('overwrite').parquet(os.path.join(exploitation_zone_parquet_file_path, 'fact_customer_inventory.parquet')) | ||
# fact_customer_sentiment_df.write.mode('overwrite').parquet(f'/home/pce/Documents/VBP_Joint_Project-main/data/exploitation_zone/fact_customer_review.parquet') |