AI-Powered Automated Penetration Testing - One Command, Complete Analysis
Stop clicking through tools manually. KameLionStack orchestrates your entire pentest workflow with AI-driven intelligence.
python scan_enhanced.py https://target.com standard 10 standardOne command runs: Nmap → Nuclei → SQLMap → Nikto → ffuf → AI Analysis → Exploits. Automatically.
INPUT: target.com
↓
Scans all ports + services (Nmap)
Finds all subdomains (Subfinder + httpx)
Discovers hidden directories (ffuf + gobuster)
Runs 1000+ CVE checks (Nuclei)
Tests SQL injection everywhere (SQLMap)
Checks session security (JWT/Cookies/CSRF)
Detects & bypasses WAFs
AI analyzes everything (Local LLM)
Generates working exploits
↓
OUTPUT: Complete pentest report in 5-10 minutes
Real Results:
- 50-200+ vulnerabilities per scan
- Actual CVEs detected (not false positives)
- Ready-to-use exploit commands
- Professional JSON reports
Python & Ollama:
# Python 3.8+
python --version
# Ollama (for AI)
https://ollama.ai/downloadAI Model Setup:
Choose based on your GPU:
| GPU VRAM | Recommended Model | Speed | Quality |
|---|---|---|---|
| 4GB or less | qwen2.5-coder:3b |
15-20 tok/sec | 85% |
| 6GB+ | qwen2.5-coder:7b |
30-40 tok/sec | 90% |
| 8GB+ | qwen2.5-coder:14b |
20-30 tok/sec | 95% |
# For 4GB VRAM (RTX 2050, GTX 1650, etc.)
ollama pull qwen2.5-coder:3b
# For 6GB+ VRAM
ollama pull qwen2.5-coder:7bPentesting Tools (install what you need):
# Core tools (recommended)
- Nmap: https://nmap.org/download.html
- Nuclei: go install -v github.com/projectdiscovery/nuclei/v3/cmd/nuclei@latest
- SQLMap: pip install sqlmap
# Optional (for advanced features)
- Nikto: apt install nikto
- ffuf: go install github.com/ffuf/ffuf@latest
- gobuster: go install github.com/OJ/gobuster/v3@latest
- Subfinder: go install -v github.com/projectdiscovery/subfinder/v2/cmd/subfinder@latest
- httpx: go install -v github.com/projectdiscovery/httpx/cmd/httpx@latestCheck installed tools:
AUDIT_TOOLS.bat # Shows which tools you havegit clone https://github.com/yourusername/kamelionstack-ose.git
cd kamelionstack-ose
# Install Python dependencies
pip install -r requirements.txt
# Start Ollama service
ollama serve
# Start KameLionStack server
python kamelionstack_server.py# Quick scan (2-3 min)
python scan_enhanced.py https://target.com quick 5 quick
# Standard scan (5-10 min) - RECOMMENDED
python scan_enhanced.py https://target.com standard 10 standard
# Deep scan (15-20 min)
python scan_enhanced.py https://target.com deep 20 fullResults saved to: Reports/enhanced_scan_report_[timestamp].json
| Mode | Time | What It Does | Best For |
|---|---|---|---|
| quick | 2-3 min | Fast port scan + subdomains + Nuclei CVEs | Bug bounty recon |
| standard | 5-10 min | Full scan + all tools + SQLMap + AI analysis | Professional pentests |
| deep | 15-20 min | All 65K ports + extensive fuzzing + everything | Red team engagements |
- SQL Injection (manual payloads + SQLMap)
- XSS (Reflected, Stored, DOM)
- LFI/RFI
- Command Injection
- SSRF
- XXE
- JWT Security (13 tests)
- Session Management
- CSRF Protection
- Authentication Bypass
- WAF Detection (10+ types)
- 1000+ CVE templates (Nuclei)
- Web server misconfigurations
- Default credentials
- Exposed panels
- Nmap - Port/service detection
- Nuclei - CVE & vulnerability scanning
- SQLMap - SQL injection testing
- Nikto - Web server analysis
- ffuf & gobuster - Directory fuzzing
- Subfinder & httpx - Subdomain discovery
python scan_enhanced.py http://testphp.vulnweb.comcurl -X POST http://localhost:8888/api/workflow/enhanced \
-H "Content-Type: application/json" \
-d '{"target": "https://example.com", "recon_mode": "standard"}'# Scan with specific settings
python scan_enhanced.py https://target.com \
quick # Recon mode: quick/standard/deep
5 # AI iterations: 1-20
standard # Tool mode: quick/standard/fullKameLionStack - Enhanced LLM Pentesting
======================================================================
Target: http://testphp.vulnweb.com
Scan Time: 352 seconds
RESULTS:
Vulnerabilities: 38
Exploits Generated: 5
Phases: 7/7 complete
SEVERITY:
CRITICAL: 12
HIGH: 15
MEDIUM: 8
LOW: 3
DISCOVERED:
Open Ports: 3
Subdomains: 2
Directories: 15
CVEs: 8
SCAN COMPLETE
Report: Reports/enhanced_scan_report_20251229.json
CLI/API Request
↓
Flask Server (kamelionstack_server.py)
↓
Enhanced Workflow Manager
↓
├─→ Reconnaissance (Nmap, Subfinder, httpx, ffuf)
├─→ Active Scanning (SQL, XSS, LFI)
├─→ Session Testing (JWT, Cookies, CSRF)
├─→ Advanced Testing (Command Injection, SSRF, XXE)
├─→ Tool Scanning (Nuclei, SQLMap, Nikto)
├─→ WAF Detection
└─→ AI Analysis (Local LLM) → Exploits
Scan Modes:
quick- Fast recon (2-3 min)standard- Balanced scan (5-10 min)deep- Complete pentest (15-20 min)
Tool Modes:
quick- Nuclei CVEs onlystandard- Nuclei + SQLMapfull- All tools + Nikto
AI Iterations: 1-20 (default: 10)
- Higher = more detailed analysis
- 5 = quick, 10 = standard, 20 = thorough
kamelionstack-ose/
├── kamelionstack_server.py # Main server
├── scan_enhanced.py # CLI scanner
├── enhanced_workflow_manager.py # Workflow orchestrator
├── tool_orchestrator.py # Tool integration
├── reconnaissance_phase.py # Recon phase
├── active_scanner.py # SQL/XSS/LFI scanner
├── session_scanner.py # JWT/Cookie tester
├── advanced_vuln_scanner.py # Command/SSRF/XXE
├── waf_bypass.py # WAF detection
├── exploit_generator.py # Exploit creation
├── ollama_integration.py # AI integration
├── owasp_payloads.py # Payload database
└── requirements.txt # Dependencies
For authorized testing only.
- Get written permission before testing
- Follow responsible disclosure
- Comply with local laws
Unauthorized access is illegal. We're not responsible for misuse.
Pull requests welcome! Please:
- Test your changes
- Update documentation
- Follow existing code style
MIT License - See LICENSE file
Built with:
- Ollama - Local LLM
- ProjectDiscovery - Nuclei, Subfinder, httpx
- SQLMap - SQL injection testing
- Nmap - Network scanning
- OWASP payloads & methodology
Made for security professionals by security amateurs supervised by Claude (who's actually pretty good at this stuff but won't admit it) 😂
Disclaimer: No AI models were harmed in the making of this tool. Some were mildly confused about why we kept asking them to generate exploits, though.