Skip to content

Srinikhil/AI-Agent-LangGraph-Chatbot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ€– AI Agent LangGraph Chatbot

An intelligent agent-powered chatbot API built using LangGraph, Groq LLMs, and FastAPI, enhanced with real-time search using TavilySearchResults. Supports multiple large models such as LLaMA 3, Mixtral, and Gemma.

πŸ”— Live Repo: github.com/Srinikhil/AI-Agent-LangGraph-Chatbot


οΏ½ Features

  • 🌐 FastAPI backend for handling chat requests
  • 🧠 Agent-based reasoning via LangGraph's ReAct pattern
  • πŸ” Integrated web search using TavilySearchResults
  • πŸ”„ Supports multiple LLMs via Groq:
    • llama3-70b-8192
    • distil-whisper-large-v3-en
    • gemma2-9b-it
    • mixtral-8x7b-32768
  • πŸ“‘ API-first design for frontend or app integrations

🧠 Models Supported

Model Name Description
llama3-70b-8192 Meta's latest high-accuracy LLM
distil-whisper-large-v3-en Efficient speech recognition (English)
gemma2-9b-it Fine-tuned conversational model
mixtral-8x7b-32768 Sparse Mixture-of-Experts model

πŸ” Setup

  1. Clone the repo:
git clone https://github.com/Srinikhil/AI-Agent-LangGraph-Chatbot.git
cd AI-Agent-LangGraph-Chatbot
  1. Install dependencies:
pip install -r requirements.txt
  1. Add API keys in app.py:
groq_api_key = 'your_groq_api_key_here'
os.environ["TAVILY_API_KEY"] = 'your_tavily_api_key_here'
  1. Run
uvicorn app:app --reload
# API at: http://127.0.0.1:8000/chat
  1. Run UI
streamlit run UI.py

About

Chatbot using LangGraph

Topics

Resources

Stars

Watchers

Forks

Languages