Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions spatialdm/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@ def pair_selection_matrix(adata, n_perm, sel_ind, method):

# averaged ligand values
L1 = [pd.Series(x[0]).dropna().values for x in ligand.values]
L_mat = [adata[:, L1[l]].X.astype(np.float)[:, 0] for l in range(len(L1))]
L_mat = [adata[:, L1[l]].X.astype(np.float16)[:, 0] for l in range(len(L1))]
for i, k in enumerate(ligand.index):
if len(ligand.loc[k].dropna()) > 1:
if adata.uns['mean'] == 'geometric':
Expand All @@ -185,7 +185,7 @@ def pair_selection_matrix(adata, n_perm, sel_ind, method):

# averaged receptor values
R1 = [pd.Series(x[0]).dropna().values for x in receptor.values]
R_mat = [adata[:, R1[r]].X.astype(np.float)[:, 0] for r in range(len(R1))]
R_mat = [adata[:, R1[r]].X.astype(np.float16)[:, 0] for r in range(len(R1))]
for i, k in enumerate(receptor.index):
if len(receptor.loc[k].dropna()) > 1:
if adata.uns['mean'] == 'geometric':
Expand Down Expand Up @@ -248,7 +248,7 @@ def spot_selection_matrix(adata, ligand, receptor, ind, n_perm, method, scale_X=
if adata.uns['mean'] == 'geometric':
from scipy.stats.mstats import gmean
L1 = [pd.Series(x[0]).dropna().values for x in ligand.values]
L_mat0 = [raw_norm[:, L1[l]].X.A.astype(np.float)[:, 0] for l in range(len(L1))]
L_mat0 = [raw_norm[:, L1[l]].X.A.astype(np.float16)[:, 0] for l in range(len(L1))]
for i, k in enumerate(ligand.index):
if len(ligand.loc[k].dropna()) > 1:
if adata.uns['mean'] == 'geometric':
Expand All @@ -258,7 +258,7 @@ def spot_selection_matrix(adata, ligand, receptor, ind, n_perm, method, scale_X=

# averaged receptor values
R1 = [pd.Series(x[0]).dropna().values for x in receptor.values]
R_mat0 = [raw_norm[:, R1[r]].X.A.astype(np.float)[:, 0] for r in range(len(R1))]
R_mat0 = [raw_norm[:, R1[r]].X.A.astype(np.float16)[:, 0] for r in range(len(R1))]
for i, k in enumerate(receptor.index):
if len(receptor.loc[k].dropna()) > 1:
if adata.uns['mean'] == 'geometric':
Expand Down