This repository is mainly based on the code of https://github.com/KhaledSaleh/driving_behaviour_classification
It has 3 different models:
- a LSTM model (original model from [1])
- a feed-forward model (ANN) for HDC encodings
- a spiking neural model (SNN) for HDC encodings
[1] K. Saleh, M. Hossny, and S. Nahavandi, “Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks,” in International Conference on Intelligent Transportation Systems (ITSC), 2017.
Tested with the Python packages listed in requirements.txt.
- first, clone the Repo
git clone https://github.com/TUC-ProAut/HDC_driving_style_classification.git
- Run
python3 main.py --help
to check the available command line args. - Run ANN with HDC encodings:
python3 main.py --HDC_ANN True
(use --dataset argument to select between full, motorway, secondary or full_crossval)
- Run ANN with concatenated input sequences:
python3 main.py --Concat_ANN True
- Run the original LSTM model from https://github.com/KhaledSaleh/driving_behaviour_classification
python3 main.py --LSTM True
- Run SNN with HDC encodings:
python3 main.py --HDC_SNN True
The results are written to the log file logs/main_log.log
- Run
python3 main.py --data_efficiency True --HDC_ANN True
for the appropriate network as in section above
- Run
python3 main.py --hyperparams_experiment True --HDC_ANN True
- Run
eval_baseline_models.m