-
Notifications
You must be signed in to change notification settings - Fork 98
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #276 from Tencent/release/v0.12.0
Release/v0.12.0
- Loading branch information
Showing
26 changed files
with
1,212 additions
and
175 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
#!/usr/bin/env python3 | ||
|
||
import os | ||
import sys | ||
|
||
import datetime | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import prettytable | ||
import termcolor | ||
|
||
# Benchmark scenarios | ||
SCENARIO = ["long", "short"] | ||
|
||
# QUIC implementations. | ||
# The first element is used as the normalization base. | ||
IMPLS = ["lsquic", "tquic"] | ||
|
||
# Round of benchmark in one scenario. | ||
ROUND = 5 | ||
|
||
# File sizes in long connection scenario benchmark. | ||
LONG_FILE_SIZES = ["15K", "50K", "2M"] | ||
|
||
# File sizes in short connection scenario benchmark. | ||
SHORT_FILE_SIZES = ["1K"] | ||
|
||
# Different concurrent connections. | ||
LONG_CONNS = [10] | ||
|
||
# Different concurrent connections. | ||
SHORT_CONNS = [10] | ||
|
||
# Different concurrent streams. | ||
LONG_STREAMS = [1, 10] | ||
|
||
# Different concurrent streams. | ||
SHORT_STREAMS = [1] | ||
|
||
# Time span of the trend chart. | ||
DAYS = 90 | ||
|
||
# Read data from benchmark result file. | ||
def read_data(data_dir, scen, impl, size, conn, stream, round, date): | ||
dirname = "benchmark_%s_%s_%d_%d.%s" % (scen, size, conn, stream, date) | ||
filename = "benchmark_%s_%s_%s_%d_%d.%d.%s" % (scen, impl, size, conn, stream, round, date) | ||
path = os.path.join(data_dir, dirname, filename) | ||
try: | ||
with open(path) as f: | ||
data = f.read().strip() | ||
return float(data) | ||
except: | ||
return 0.0 | ||
|
||
# Load benchmark results into array. | ||
def prepare_data(data_dir): | ||
titles = [' ' for _ in range((len(LONG_FILE_SIZES)*len(LONG_CONNS)*len(LONG_STREAMS) + len(SHORT_FILE_SIZES)*len(SHORT_CONNS)*len(SHORT_STREAMS)))] | ||
result = [[[[0.0 for _ in range(len(LONG_FILE_SIZES)*len(LONG_CONNS)*len(LONG_STREAMS) + len(SHORT_FILE_SIZES)*len(SHORT_CONNS)*len(SHORT_STREAMS))] for _ in range(len(IMPLS))] for _ in range(DAYS)] for _ in range(ROUND) ] | ||
|
||
# Load long connection scenario result. | ||
I = len(LONG_FILE_SIZES) | ||
J = len(LONG_CONNS) | ||
K = len(LONG_STREAMS) | ||
N = len(IMPLS) | ||
D = DAYS | ||
for i in range(I): | ||
for j in range(J): | ||
for k in range(K): | ||
titles[i*J*K+j*K+k] = "long %s %d %d" % (LONG_FILE_SIZES[i], LONG_CONNS[j], LONG_STREAMS[k]) | ||
for n in range(N): | ||
for d in range(D): | ||
for r in range(ROUND): | ||
date = (datetime.datetime.now() - datetime.timedelta(days=d)).strftime('%Y-%m-%d') | ||
result[r][D-1-d][n][i*J*K+j*K+k] = read_data(data_dir, "long", IMPLS[n], LONG_FILE_SIZES[i], LONG_CONNS[j], LONG_STREAMS[k], r, date) | ||
|
||
# Load short connection scenario result. | ||
M = len(LONG_FILE_SIZES)*len(LONG_CONNS)*len(LONG_STREAMS) | ||
I = len(SHORT_FILE_SIZES) | ||
J = len(SHORT_CONNS) | ||
K = len(SHORT_STREAMS) | ||
N = len(IMPLS) | ||
D = DAYS | ||
for i in range(I): | ||
for j in range(J): | ||
for k in range(K): | ||
titles[M+i*J*K+j*K+k] = "short %s %d %d" % (SHORT_FILE_SIZES[i], SHORT_CONNS[j], SHORT_STREAMS[k]) | ||
for n in range(N): | ||
for d in range(D): | ||
for r in range(ROUND): | ||
date = (datetime.datetime.now() - datetime.timedelta(days=d)).strftime('%Y-%m-%d') | ||
result[r][D-1-d][n][M+i*J*K+j*K+k] = read_data(data_dir, "short", IMPLS[n], SHORT_FILE_SIZES[i], SHORT_CONNS[j], LONG_STREAMS[k], r, date) | ||
|
||
# Average by rounds. | ||
result_avg = np.mean(np.array(result), axis=0).tolist() | ||
|
||
# Normalize benchmark result. | ||
for d in range(D): | ||
base = result_avg[d][0] | ||
for i in range(1, len(result_avg[d])): | ||
result_avg[d][i] = [round(x/y, 4) if y != 0 else 0 for x, y in zip(result_avg[d][i], base)] | ||
for i in range(len(result_avg[d][0])): | ||
if result_avg[d][0][i] != 0: | ||
result_avg[d][0][i] = 1 | ||
|
||
return titles, result_avg | ||
|
||
# Print benchmark performance result to stdout. | ||
def show(titles, result): | ||
table = prettytable.PrettyTable() | ||
table.field_names = titles | ||
|
||
for i in range(len(result)): | ||
colored_row_name = termcolor.colored(IMPLS[i], 'green') | ||
table.add_row([colored_row_name] + result[i]) | ||
|
||
print(table) | ||
|
||
# Plot graph according to benchmark performance result. | ||
def plot(titles, result): | ||
|
||
N = len(titles) | ||
M = len(result) | ||
|
||
width = 0.35 | ||
gap = 0.5 | ||
|
||
ind = np.arange(N) * (width * M + gap) | ||
|
||
fig, ax = plt.subplots() | ||
fig.set_size_inches(10, 5) | ||
for i in range(M): | ||
ax.bar(ind + i*width, result[i], width, label=IMPLS[i]) | ||
|
||
ax.set_ylabel('RPS') | ||
ax.set_title('TQUIC benchmark') | ||
ax.set_xticks(ind + width * M / 2) | ||
ax.set_xticklabels(titles, rotation=45, fontsize=6) | ||
|
||
ax.legend() | ||
|
||
plt.savefig("benchmark_all.png", dpi=300) | ||
|
||
# Plot trend of latest days. | ||
def trend(titles, result): | ||
num_scenarios = len(result[0][0]) | ||
num_curves = len(result[0]) | ||
|
||
fig = plt.figure(figsize=(10, num_scenarios*5)) | ||
|
||
for s in range(num_scenarios): | ||
ax = fig.add_subplot(num_scenarios, 1, s+1) | ||
ax.set_title(titles[s]) | ||
ax.set_xlabel("Date") | ||
ax.set_ylabel("RPS") | ||
|
||
for c in range(num_curves): | ||
y_values = [result[d][c][s] for d in range(DAYS)] | ||
ax.plot(list(range(DAYS)), y_values, label=IMPLS[c]) | ||
|
||
ax.legend() | ||
|
||
plt.tight_layout() | ||
plt.savefig("benchmark_all_trend.png", dpi=300) | ||
|
||
if __name__ == '__main__': | ||
if len(sys.argv) < 2: | ||
print("Usage: %s [data_dir]" % (sys.argv[0])) | ||
exit(1) | ||
|
||
data_dir= sys.argv[1] | ||
titles, result = prepare_data(data_dir) | ||
plot(titles, result[DAYS-1]) | ||
trend(titles, result) | ||
titles.insert(0, '') | ||
show(titles, result[DAYS-1]) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.