Releases: Teradata/teradatamlspk
teradatamlspk 20.00.00.01
Teradata Python package for running Spark workloads on Vantage.
teradatamlspk is a Python module to run PySpark workloads on Vantage with minimal changes to the Python script.
For community support, please visit the Teradata Community.
For Teradata customer support, please visit Teradata Support.
Copyright 2024, Teradata. All Rights Reserved.
Table of Contents
Release Notes:
teradatamlspk 20.00.00.01
-
teradatamlspk DataFrame
write()
- Supports writing the DataFrame to local file system or to Vantage or to cloud storage.writeTo()
- Supports writing the DataFrame to a Vantage table.rdd
- Returns the same DataFrame.
-
teradatamlspk DataFrameColumn a.k.a. ColumnExpression
desc_nulls_first
- Returns a sort expression based on the descending order of the given column name, and null values appear before non-null values.desc_nulls_last
- Returns a sort expression based on the descending order of the given column name, and null values appear after non-null values.asc_nulls_first
- Returns a sort expression based on the ascending order of the given column name, and null values appear before non-null values.asc_nulls_last
- Returns a sort expression based on the ascending order of the given column name, and null values appear after non-null values.
-
Updates
DataFrame.fillna()
andDataFrame.na.fill()
now supports input arguments of the same data type or their types must be compatible.DataFrame.agg()
andGroupedData.agg()
function supports Column as input and '*' for 'count'.DataFrameColumn.cast()
andDataFrameColumn.alias()
now accepts string literal which are case insensitive.- Optimised performance for
DataFrame.show()
- Classification Summary, TrainingSummary object and MulticlassClassificationEvaluator now supports
weightedTruePositiveRate
andweightedFalsePositiveRate
metric. - Arithmetic operations can be performed on window aggregates.
-
Bug Fixes
DataFrame.head()
returns a list when n is 1.DataFrame.union()
andDataFrame.unionAll()
now performs union of rows based on columns position.DataFrame.groupBy()
andDataFrame.groupby()
now accepts columns as positional arguments as well, for exampledf.groupBy("col1", "col2")
.- MLlib Functions attribute
numClasses
andintercept
now return value. - Appropriate error is raised if invalid file is passed to
pyspark2teradataml
. when
function accepts Column also along with literal forvalue
argument.
teradatamlspk 20.0.0.0
teradatamlspk 20.0.0.0
is the initial release version. Please refer to the teradatamlspk User Guide for the available API's and their functionality.
Installation and Requirements
Package Requirements:
- Python 3.8 or later
Note: 32-bit Python is not supported.
Minimum System Requirements:
- Windows 7 (64Bit) or later
- macOS 10.9 (64Bit) or later
- Red Hat 7 or later versions
- Ubuntu 16.04 or later versions
- CentOS 7 or later versions
- SLES 12 or later versions
- Teradata Vantage Advanced SQL Engine:
- Advanced SQL Engine 16.20 Feature Update 1 or later
Installation
Use pip to install the teradatamlspk for running PySpark workloads.
Platform | Command |
---|---|
macOS/Linux | pip install teradatamlspk |
Windows | py -3 -m pip install teradatamlspk |
When upgrading to a new version, you may need to use pip install's --no-cache-dir
option to force the download of the new version.
Platform | Command |
---|---|
macOS/Linux | pip install --no-cache-dir -U teradatamlspk |
Windows | py -3 -m pip install --no-cache-dir -U teradatamlspk |
Usage the teradatamlspk
Package
teradatamlspk
has a utility pyspark2teradataml
which takes input as your PySpark script, analyzes it and generates 2 files as below:
- HTML file - Created in the same directory where users PySpark script resides with name as
<your pyspark script name>_tdmlspk.html
. This file contains the script conversion report. Based on the report user can take the action on the generated scripts. - Python script - Created in the same directory where users PySpark script resides with name as
<your pyspark script name>_tdmlspk.py
. that can be run on Vantage.- Refer to the HTML report to understand the changes done and required to be done in the script.
Example to demostrate the usage of utility pyspark2teradataml
>>> from teradatamlspk import pyspark2teradataml
>>> pyspark2teradataml('/tmp/pyspark_script.py')
Python script '/tmp/pyspark_script.py' converted to '/tmp/pyspark_script_tdmlspk.py' successfully.
Script conversion report '/tmp/pyspark_script_tdmlspk.html' published successfully.
Example to demostrate the teradatamlspk
DataFrame creation.
>>> from teradatamlspk.sql import TeradataSession.
>>> spark = TeradataSession.builder.getOrCreate(host=host, user = user, password=password)
>>> df = spark.createDataFrame("test_classification")
>>> df.show()
+----------------------+---------------------+---------------------+----------------------+-------+
| col1 | col2 | col3 | col4 | label |
+----------------------+---------------------+---------------------+----------------------+-------+
| -1.1305820619922704 | -0.0202959251414216 | -0.7102336334648424 | -1.4409910829920618 | 0 |
| -0.28692000017174224 | -0.7169529842687833 | -0.9865850877151031 | -0.848214734984639 | 0 |
| -2.5604297516143286 | 0.4022323367243113 | -1.1007419820939435 | -2.9595882598466674 | 0 |
| 0.4223414406917685 | -2.0391144030275625 | -2.053215806414584 | -0.8491230457662061 | 0 |
| 0.7216694959200303 | -1.1215566442946217 | -0.8318398647044646 | 0.15074209659533433 | 0 |
| -0.9861325665504175 | 1.7105310292848412 | 1.3382818041204743 | -0.08534109029742933 | 1 |
| -0.5097927128625588 | 0.4926589443964751 | 0.2482067293662461 | -0.3095907315896897 | 1 |
| 0.18332468205821462 | -0.774610353732039 | -0.766054694735782 | -0.29366863291253276 | 0 |
| -0.4032571038523639 | 2.0061840569850093 | 2.0275124771199318 | 0.8508919440196763 | 1 |
| -0.07156025619387396 | 0.2295539000122874 | 0.21654344712218576 | 0.06527397921673575 | 1 |
+----------------------+---------------------+---------------------+----------------------+-------+
Documentation
General product information, including installation instructions, is available in the Teradata Documentation website
License
Use of the Teradata Spark Package is governed by the License Agreement for teradatamlspk and pyspark2teradataml.
After installation, the LICENSE
and LICENSE-3RD-PARTY
files are located in the teradatamlspk
directory of the Python installation directory.
teradatamlspk 20.00.00.00
Release Notes:
teradatamlspk 20.0.0.0
teradatamlspk 20.0.0.0
is the initial release version. Please refer to the teradatamlspk User Guide for the available API's and their functionality.
Installation and Requirements
Package Requirements:
- Python 3.5 or later
Note: 32-bit Python is not supported.
Minimum System Requirements:
- Windows 7 (64Bit) or later
- macOS 10.9 (64Bit) or later
- Red Hat 7 or later versions
- Ubuntu 16.04 or later versions
- CentOS 7 or later versions
- SLES 12 or later versions
- Teradata Vantage Advanced SQL Engine:
- Advanced SQL Engine 16.20 Feature Update 1 or later
Installation
Use pip to install the teradatamlspk for running PySpark workloads.
Platform | Command |
---|---|
macOS/Linux | pip install teradatamlspk |
Windows | py -3 -m pip install teradatamlspk |
When upgrading to a new version, you may need to use pip install's --no-cache-dir
option to force the download of the new version.
Platform | Command |
---|---|
macOS/Linux | pip install --no-cache-dir -U teradatamlspk |
Windows | py -3 -m pip install --no-cache-dir -U teradatamlspk |
Usage the teradatamlspk
Package
teradatamlspk
has a utility pyspark2teradataml
which takes input as your PySpark script, analyzes it and generates 2 files as below:
- HTML file - Created in the same directory where users PySpark script resides with name as
<your pyspark script name>_tdmlspk.html
. This file contains the script conversion report. Based on the report user can take the action on the generated scripts. - Python script - Created in the same directory where users PySpark script resides with name as
<your pyspark script name>_tdmlspk.py
. that can be run on Vantage.- Refer to the HTML report to understand the changes done and required to be done in the script.
Example to demostrate the usage of utility pyspark2teradataml
>>> from teradatamlspk import pyspark2teradataml
>>> pyspark2teradataml('/tmp/pyspark_script.py')
Python script '/tmp/pyspark_script.py' converted to '/tmp/pyspark_script_tdmlspk.py' successfully.
Script conversion report '/tmp/pyspark_script_tdmlspk.html' published successfully.
Example to demostrate the teradatamlspk
DataFrame creation.
>>> from teradatamlspk.sql import TeradataSession.
>>> spark = TeradataSession.builder.getOrCreate(host=host, user = user, password=password)
>>> df = spark.createDataFrame("test_classification")
>>> df.show()
+----------------------+---------------------+---------------------+----------------------+-------+
| col1 | col2 | col3 | col4 | label |
+----------------------+---------------------+---------------------+----------------------+-------+
| -1.1305820619922704 | -0.0202959251414216 | -0.7102336334648424 | -1.4409910829920618 | 0 |
| -0.28692000017174224 | -0.7169529842687833 | -0.9865850877151031 | -0.848214734984639 | 0 |
| -2.5604297516143286 | 0.4022323367243113 | -1.1007419820939435 | -2.9595882598466674 | 0 |
| 0.4223414406917685 | -2.0391144030275625 | -2.053215806414584 | -0.8491230457662061 | 0 |
| 0.7216694959200303 | -1.1215566442946217 | -0.8318398647044646 | 0.15074209659533433 | 0 |
| -0.9861325665504175 | 1.7105310292848412 | 1.3382818041204743 | -0.08534109029742933 | 1 |
| -0.5097927128625588 | 0.4926589443964751 | 0.2482067293662461 | -0.3095907315896897 | 1 |
| 0.18332468205821462 | -0.774610353732039 | -0.766054694735782 | -0.29366863291253276 | 0 |
| -0.4032571038523639 | 2.0061840569850093 | 2.0275124771199318 | 0.8508919440196763 | 1 |
| -0.07156025619387396 | 0.2295539000122874 | 0.21654344712218576 | 0.06527397921673575 | 1 |
+----------------------+---------------------+---------------------+----------------------+-------+