Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 18 additions & 1 deletion databricks_workflows/nhp_data-extract_nhp_for_containers.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -143,9 +143,26 @@ resources:
- pypi:
package: pygam==0.9.1
- whl: ../dist/*.whl
- task_key: clean_up
- task_key: generate_synthetic_data
depends_on:
- task_key: generate_national_gams
for_each_task:
inputs: "{{job.parameters.years}}"
task:
task_key: run_generate_synthetic_data
python_wheel_task:
package_name: nhp_data
entry_point: model_data-generate_synthetic_data
parameters:
- "{{job.parameters.save_path}}"
- "{{input}}"
- "20251001"
job_cluster_key: run_nhp_extracts_cluster
libraries:
- whl: ../dist/*.whl
- task_key: clean_up
depends_on:
- task_key: generate_synthetic_data
python_wheel_task:
package_name: nhp_data
entry_point: model_data-clean_up
Expand Down
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,7 @@ model_data-inequalities = "nhp.data.model_data.inequalities:main"
model_data-ip = "nhp.data.model_data.ip:main"
model_data-op = "nhp.data.model_data.op:main"
model_data-clean_up = "nhp.data.model_data.clean_up:main"
model_data-generate_synthetic_data = "nhp.data.model_data.generate_synthetic_data:main"

reference-day_procedures = "nhp.data.reference.day_procedures:main"
reference-ods_trusts = "nhp.data.reference.ods_trusts:main"
Expand Down
221 changes: 221 additions & 0 deletions src/nhp/data/model_data/generate_synthetic_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
import logging
import os
import sys
import uuid
from typing import Callable

import numpy as np
import pandas as pd
import pyspark.sql.functions as F
from pyspark.sql import DataFrame, SparkSession

from nhp.data.get_spark import get_spark

logger = logging.getLogger(__name__)


def generate_data(name: str):
def decorator(func: Callable[["SynthData", DataFrame], pd.DataFrame]):
def wrapper(self):
logger.info(f"Generating synthetic data for {name}")
df = self.read_dev_file(name)
result = func(self, df)
self.save_synth_file(name, result)
logger.info(f"Synthetic data for {name} saved")

return wrapper

return decorator


class SynthData:
# how many inpatients rows should we target?
IP_N = 100000

def __init__(self, fyear: int, path: str, seed: int, spark: SparkSession):
self._fyear = fyear
self._dev_path = f"{path}/dev"
self._synth_path = f"{path}/synth"
self._seed = seed

self._spark = spark

# helper methods

def read_dev_file(self, file: str) -> pd.DataFrame:
return self.read_file(file, self._dev_path)

def read_synth_file(self, file: str) -> pd.DataFrame:
return self.read_file(file, self._synth_path)

def read_file(self, file: str, path: str) -> pd.DataFrame:
return (
self._spark.read.parquet(f"{path}/{file}")
.filter(F.col("fyear") == self._fyear)
.drop("fyear")
)

def save_synth_file(self, file: str, df: pd.DataFrame) -> None:
p = f"{self._synth_path}/{file}/fyear={self._fyear}/dataset=synthetic"
os.makedirs(p, exist_ok=True)
df.to_parquet(f"{p}/0.parquet")

def generate(self) -> None:
self._ip()
self._ip_activity_avoidance_stratgegies()
self._ip_efficiencies_strategies()
self._inequalities()
self._aae()
self._op()
self._birth_factors()
self._demographic_factors()
self._hsa_activity_tables()

@property
def hrgs(self) -> list:
if not hasattr(self, "_hrgs"):
ip_df = (
self.read_dev_file("ip")
.groupBy("sushrg_trimmed")
.count()
.orderBy(F.desc("count"))
.collect()
)
self._hrgs = [row["sushrg_trimmed"] for row in ip_df]
return self._hrgs

def _hrg_remapping(self, col: pd.Series) -> pd.Series:
hrgs = self.hrgs
if not hrgs:
raise ValueError("HRGs list is empty. Cannot remap.")
return col.replace(hrgs, [f"HRG{i + 1}" for i, _ in enumerate(hrgs)])

# synth methods

@generate_data("ip")
def _ip(self, df: DataFrame) -> pd.DataFrame:
ip_R = self.IP_N / df.count()

df = df.sample(False, ip_R, self._seed)

ip = df.drop("dataset", "fyear").toPandas()
ip = ip.assign(sitetret=np.random.choice(["a", "b", "c"], len(ip)))

ip["sushrg_trimmed"] = self._hrg_remapping(ip["sushrg_trimmed"])

return ip

@generate_data("ip_activity_avoidance_strategies")
def _ip_activity_avoidance_stratgegies(self, df: DataFrame) -> pd.DataFrame:
ip_df = self.read_synth_file("ip")
return df.join(ip_df, "rn", "semi").toPandas()

@generate_data("ip_efficiencies_strategies")
def _ip_efficiencies_strategies(self, df: DataFrame) -> pd.DataFrame:
ip_df = self.read_synth_file("ip")
return df.join(ip_df, "rn", "semi").toPandas()

@generate_data("inequalities")
def _inequalities(self, df: DataFrame) -> pd.DataFrame:
inequalities = df.drop("dataset").toPandas()
inequalities["sushrg_trimmed"] = self._hrg_remapping(
inequalities["sushrg_trimmed"]
)
return inequalities.drop_duplicates(
subset=["sushrg_trimmed", "icb", "imd_quintile"]
)

@generate_data("aae")
def _aae(self, df: DataFrame) -> pd.DataFrame:
rng = np.random.default_rng(self._seed)
n_aae_datasets = df.select("dataset").distinct().count()

df = df.drop("index", "dataset").withColumn("sitetret", F.lit("a"))

aae = (
df.groupBy(df.drop("arrivals").columns)
.agg(F.sum("arrivals").alias("arrivals"))
.toPandas()
.assign(arrivals=lambda r: rng.poisson(r["arrivals"] / n_aae_datasets))
.query("arrivals > 0")
)

aae["rn"] = [str(uuid.uuid4()) for _ in aae.index]

return aae

@generate_data("op")
def _op(self, df: DataFrame) -> pd.DataFrame:
rng = np.random.default_rng(self._seed)
n_op_datasets = df.select("dataset").distinct().count()

df = df.drop("index", "dataset").withColumn("sitetret", F.lit("a"))

op = (
df.groupBy(df.drop("attendances", "tele_attendances").columns)
.agg(
F.sum("attendances").alias("attendances"),
F.sum("tele_attendances").alias("tele_attendances"),
)
.toPandas()
.assign(
attendances=lambda r: rng.poisson(r["attendances"] / n_op_datasets),
tele_attendances=lambda r: rng.poisson(
r["tele_attendances"] / n_op_datasets
),
)
.query("(attendances > 0) or (tele_attendances > 0)")
)
op["sushrg_trimmed"] = self._hrg_remapping(op["sushrg_trimmed"])

op["rn"] = [str(uuid.uuid4()) for _ in op.index]

return op

@generate_data("birth_factors")
def _birth_factors(self, df: DataFrame) -> pd.DataFrame:
return (
df.drop("dataset")
.filter(~F.col("variant").startswith("custom_projection_"))
.toPandas()
.groupby(["variant", "sex", "age"], as_index=False)
.mean()
)

@generate_data("demographic_factors")
def _demographic_factors(self, df: DataFrame) -> pd.DataFrame:
return (
df.drop("dataset")
.filter(~F.col("variant").startswith("custom_projection_"))
.toPandas()
.groupby(["variant", "sex", "age"], as_index=False)
.mean()
)

@generate_data("hsa_activity_tables")
def _hsa_activity_tables(self, df: DataFrame) -> pd.DataFrame:
return (
df.drop("dataset")
.toPandas()
.groupby(["hsagrp", "sex", "age"], as_index=False)
.mean()
)


def main():
logging.basicConfig(level=logging.INFO)
logger.setLevel(logging.INFO)

handler = logging.StreamHandler()
handler.setLevel(logging.INFO)

logging.getLogger("py4j").setLevel(logging.ERROR)

path = sys.argv[1]
fyear = int(sys.argv[2][:4])
seed = int(sys.argv[3])

spark = get_spark("model_data")

d = SynthData(fyear, path, seed, spark)
d.generate()
Loading