generated from kyegomez/Python-Package-Template
-
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Your Name
committed
Nov 23, 2024
1 parent
1e098e8
commit 50dcfaf
Showing
2 changed files
with
256 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
import os | ||
from dotenv import load_dotenv | ||
from swarms import Agent, SequentialWorkflow | ||
from swarm_models import OpenAIChat | ||
from swarm_deploy import SwarmDeploy | ||
|
||
load_dotenv() | ||
|
||
# Get the OpenAI API key from the environment variable | ||
api_key = os.getenv("GROQ_API_KEY") | ||
|
||
# Model | ||
model = OpenAIChat( | ||
openai_api_base="https://api.groq.com/openai/v1", | ||
openai_api_key=api_key, | ||
model_name="llama-3.1-70b-versatile", | ||
temperature=0.1, | ||
) | ||
|
||
|
||
# Initialize specialized agents | ||
data_extractor_agent = Agent( | ||
agent_name="Data-Extractor", | ||
system_prompt=None, | ||
llm=model, | ||
max_loops=1, | ||
autosave=True, | ||
verbose=True, | ||
dynamic_temperature_enabled=True, | ||
saved_state_path="data_extractor_agent.json", | ||
user_name="pe_firm", | ||
retry_attempts=1, | ||
context_length=200000, | ||
output_type="string", | ||
) | ||
|
||
summarizer_agent = Agent( | ||
agent_name="Document-Summarizer", | ||
system_prompt=None, | ||
llm=model, | ||
max_loops=1, | ||
autosave=True, | ||
verbose=True, | ||
dynamic_temperature_enabled=True, | ||
saved_state_path="summarizer_agent.json", | ||
user_name="pe_firm", | ||
retry_attempts=1, | ||
context_length=200000, | ||
output_type="string", | ||
) | ||
|
||
financial_analyst_agent = Agent( | ||
agent_name="Financial-Analyst", | ||
system_prompt=None, | ||
llm=model, | ||
max_loops=1, | ||
autosave=True, | ||
verbose=True, | ||
dynamic_temperature_enabled=True, | ||
saved_state_path="financial_analyst_agent.json", | ||
user_name="pe_firm", | ||
retry_attempts=1, | ||
context_length=200000, | ||
output_type="string", | ||
) | ||
|
||
market_analyst_agent = Agent( | ||
agent_name="Market-Analyst", | ||
system_prompt=None, | ||
llm=model, | ||
max_loops=1, | ||
autosave=True, | ||
verbose=True, | ||
dynamic_temperature_enabled=True, | ||
saved_state_path="market_analyst_agent.json", | ||
user_name="pe_firm", | ||
retry_attempts=1, | ||
context_length=200000, | ||
output_type="string", | ||
) | ||
|
||
operational_analyst_agent = Agent( | ||
agent_name="Operational-Analyst", | ||
system_prompt=None, | ||
llm=model, | ||
max_loops=1, | ||
autosave=True, | ||
verbose=True, | ||
dynamic_temperature_enabled=True, | ||
saved_state_path="operational_analyst_agent.json", | ||
user_name="pe_firm", | ||
retry_attempts=1, | ||
context_length=200000, | ||
output_type="string", | ||
) | ||
|
||
# Initialize the SwarmRouter | ||
router = SequentialWorkflow( | ||
name="pe-document-analysis-swarm", | ||
description="Analyze documents for private equity due diligence and investment decision-making", | ||
max_loops=1, | ||
agents=[ | ||
data_extractor_agent, | ||
summarizer_agent, | ||
financial_analyst_agent, | ||
market_analyst_agent, | ||
operational_analyst_agent, | ||
], | ||
output_type="all", | ||
) | ||
|
||
# Advanced usage with configuration | ||
swarm = SwarmDeploy( | ||
router, | ||
max_workers=4, | ||
# cache_backend="redis" | ||
) | ||
swarm.start( | ||
host="0.0.0.0", | ||
port=8000, | ||
workers=4, | ||
# ssl_keyfile="key.pem", | ||
# ssl_certfile="cert.pem" | ||
) | ||
|
||
# # Create a cluster | ||
# instances = SwarmDeploy.create_cluster( | ||
# your_callable, | ||
# num_instances=3, | ||
# start_port=8000 | ||
# ) |