Skip to content

Commit

Permalink
Compatibility fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
Thilina Rajapakse committed May 29, 2024
1 parent f89bc1b commit 919f69d
Show file tree
Hide file tree
Showing 9 changed files with 161 additions and 59 deletions.
10 changes: 10 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,16 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [0.70.1] - 2024-02-15

### Fixed

- Fixed compatibility issues with transformers >= 4.41.0

### Changed

- QoL changes for MonoT5 style models

## [0.70.0] - 2024-02-15

### Added
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

setup(
name="simpletransformers",
version="0.70.0",
version="0.70.1",
author="Thilina Rajapakse",
author_email="chaturangarajapakshe@gmail.com",
description="An easy-to-use wrapper library for the Transformers library.",
Expand Down
2 changes: 1 addition & 1 deletion simpletransformers/classification/classification_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -1926,7 +1926,7 @@ def compute_metrics(

mcc = matthews_corrcoef(labels, preds)
accuracy = accuracy_score(labels, preds)
f1 = f1_score(labels, preds)
f1 = f1_score(labels, preds, average="macro")
if self.model.num_labels == 2:
tn, fp, fn, tp = confusion_matrix(labels, preds, labels=[0, 1]).ravel()
if self.args.sliding_window:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,6 @@
from torch.optim import AdamW
from transformers.optimization import Adafactor
from transformers import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
WEIGHTS_NAME,
BertConfig,
BertModel,
Expand Down Expand Up @@ -178,24 +177,6 @@ def __init__(
self.config, self.transformer, self.img_encoder
)

if model_name not in BERT_PRETRAINED_MODEL_ARCHIVE_LIST:
try:
self.model.load_state_dict(
torch.load(os.path.join(model_name, "pytorch_model.bin"))
)
except EnvironmentError:
msg = (
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url to model weight files named one of {} but "
"couldn't find any such file at this path or url.".format(
model_name,
", ".join(BERT_PRETRAINED_MODEL_ARCHIVE_LIST),
model_name,
"pytorch_model.bin",
)
)
raise EnvironmentError(msg)

self.tokenizer = tokenizer_class.from_pretrained(
model_name, do_lower_case=self.args.do_lower_case, **kwargs
)
Expand Down
1 change: 1 addition & 0 deletions simpletransformers/config/model_args.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,7 @@ class T5Args(ModelArgs):

model_class: str = "T5Model"
add_prefix: bool = True
as_reranker: bool = False
dataset_class: Dataset = None
do_sample: bool = False
early_stopping: bool = True
Expand Down
19 changes: 0 additions & 19 deletions simpletransformers/custom_models/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,15 +34,8 @@
BigBirdPreTrainedModel,
)
from transformers.models.camembert.configuration_camembert import CamembertConfig
from transformers.models.camembert.modeling_camembert import (
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
)
from transformers.models.distilbert.configuration_distilbert import DistilBertConfig
from transformers.models.distilbert.modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
)
from transformers.models.electra.modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraConfig,
ElectraModel,
ElectraPreTrainedModel,
Expand All @@ -59,17 +52,13 @@
from transformers.models.rembert.configuration_rembert import RemBertConfig
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.models.roberta.modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaClassificationHead,
RobertaForQuestionAnswering,
RobertaPreTrainedModel,
RobertaLMHead,
MaskedLMOutput,
)
from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig
from transformers.models.xlm_roberta.modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
)
from simpletransformers.custom_models.retrieval_autoencoder import Autoencoder


Expand Down Expand Up @@ -237,7 +226,6 @@ class RobertaForMultiLabelSequenceClassification(BertPreTrainedModel):
"""

config_class = RobertaConfig
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
base_model_prefix = "roberta"

def __init__(self, config, pos_weight=None):
Expand Down Expand Up @@ -304,7 +292,6 @@ class CamembertForMultiLabelSequenceClassification(
"""

config_class = CamembertConfig
pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST
base_model_prefix = "camembert"


Expand Down Expand Up @@ -430,7 +417,6 @@ class DistilBertPreTrainedModel(PreTrainedModel):
"""

config_class = DistilBertConfig
pretrained_model_archive_map = DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST
load_tf_weights = None
base_model_prefix = "distilbert"

Expand Down Expand Up @@ -664,7 +650,6 @@ class XLMRobertaForMultiLabelSequenceClassification(
RobertaForMultiLabelSequenceClassification
):
config_class = XLMRobertaConfig
pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST


class ElectraPooler(nn.Module):
Expand Down Expand Up @@ -773,7 +758,6 @@ class ElectraForSequenceClassification(ElectraPreTrainedModel):
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
""" # noqa
config_class = ElectraConfig
pretrained_model_archive_map = ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
base_model_prefix = "electra"

def __init__(self, config, weight=None):
Expand Down Expand Up @@ -829,7 +813,6 @@ class ElectraForMultiLabelSequenceClassification(ElectraPreTrainedModel):
"""

config_class = ElectraConfig
pretrained_model_archive_map = ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
base_model_prefix = "electra"

def __init__(self, config, pos_weight=None):
Expand Down Expand Up @@ -883,7 +866,6 @@ class ElectraForQuestionAnswering(ElectraPreTrainedModel):
"""

config_class = ElectraConfig
pretrained_model_archive_map = ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
base_model_prefix = "electra"

def __init__(self, config, weight=None):
Expand Down Expand Up @@ -949,7 +931,6 @@ def forward(

class XLMRobertaForQuestionAnswering(RobertaForQuestionAnswering):
config_class = XLMRobertaConfig
pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST


class BigBirdForMultiLabelSequenceClassification(BigBirdPreTrainedModel):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -910,7 +910,7 @@ def collate(examples: List[torch.Tensor]):
if args.fp16:
with amp.autocast():
if args.model_type == "longformer":
outputs = model(inputs, attention_mask=None, labels=labels)
outputs = model(inputs, labels=labels)
elif args.model_type == "electra":
outputs = model(
inputs,
Expand All @@ -933,9 +933,7 @@ def collate(examples: List[torch.Tensor]):
loss = outputs[0]
else:
if args.model_type == "longformer":
outputs = model(
**inputs_dict, attention_mask=None, labels=labels
)
outputs = model(**inputs_dict, labels=labels)
elif args.model_type == "electra":
outputs = model(
input_ids,
Expand Down
Loading

0 comments on commit 919f69d

Please sign in to comment.