Skip to content

ThisIsSoMe/post

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

post

Several models for POS Tagging

Already implemented models:

  • BPNN+CRF
  • BiLSTM+CRF
  • CHAR+BiLSTM+CRF

Requirements

python == 3.6.5
pytorch == 0.4.1

Usage

Commands

$ git clone https://github.com/zysite/post.git
$ cd post
# eg: BiLSTM+CHAR+CRF
$ python run.py --model=lstm_char --crf

Arguments

$ python run.py -h
usage: run.py [-h] [--model {bpnn_crf,lstm_crf,char_lstm_crf}] [--drop DROP]
              [--batch_size BATCH_SIZE] [--epochs EPOCHS]
              [--interval INTERVAL] [--eta ETA] [--threads THREADS]
              [--seed SEED] [--file FILE]

Create several models for POS Tagging.

optional arguments:
  -h, --help            show this help message and exit
  --model {bpnn_crf,lstm_crf,char_lstm_crf}, -m {bpnn_crf,lstm_crf,char_lstm_crf}
                        choose the model for POS Tagging
  --drop DROP           set the prob of dropout
  --batch_size BATCH_SIZE
                        set the size of batch
  --epochs EPOCHS       set the max num of epochs
  --interval INTERVAL   set the max interval to stop
  --eta ETA             set the learning rate of training
  --threads THREADS, -t THREADS
                        set the max num of threads
  --seed SEED, -s SEED  set the seed for generating random numbers
  --file FILE, -f FILE  set where to store the model

Structures

# BPNN+CRF
BPNN_CRF(
  (embed): Embedding(54304, 100)
  (hid): Sequential(
    (0): Linear(in_features=500, out_features=300, bias=True)
    (1): ReLU()
  )
  (out): Linear(in_features=300, out_features=32, bias=True)
  (crf): CRF()
  (drop): Dropout(p=0.5)
)
# BiLSTM+CRF
LSTM_CRF(
  (embed): Embedding(54304, 100)
  (lstm): LSTM(100, 150, batch_first=True, bidirectional=True)
  (out): Linear(in_features=300, out_features=32, bias=True)
  (crf): CRF()
  (drop): Dropout(p=0.5)
)
# CHAR+BiLSTM+CRF
CHAR_LSTM_CRF(
  (embed): Embedding(54304, 100)
  (char_lstm): CharLSTM(
    (embed): Embedding(7478, 100)
    (lstm): LSTM(100, 100, batch_first=True, bidirectional=True)
  )
  (word_lstm): LSTM(300, 150, batch_first=True, bidirectional=True)
  (out): Linear(in_features=300, out_features=32, bias=True)
  (crf): CRF()
  (drop): Dropout(p=0.5)
)

References

About

Several models for POS Tagging

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%