Leverage existed CryptoMamba structure with sentiment score and compare with other algorithms
Repository Includes:
- Implementation of CryptoMamba, LSTM, iTransformer, and Temporal Convolutional Network (TCN)
- Code for data preprocessing, model training, evaluation metrics
- Data Config:
configs/data_configs/mode_1.yaml- defines data source, time intervals, and splits - Training Configs:
configs/training/cmamba_nv.yaml- without volumeconfigs/training/cmamba_v.yaml- with volume
- Model Configs:
configs/models/CryptoMamba/v1.yaml- 5 features, no normalizationconfigs/models/CryptoMamba/v2.yaml- 6 features, no normalization
Your raw data CSV should contain:
Timestamp(orDatecolumn)Open,High,Low,ClosepricesVolume(optional, for volume variant)
CryptoMamba uses:
- Mamba SSM blocks with selective state updates
- Residual connections and optional MLP branches
- Configurable hidden dimensions and layer density
- Window-based processing (default: 14 days)
- Logs:
logs/(TensorBoard) - Checkpoints:
checkpoints/(best models) - Results:
Results/<name>/<config>/(evaluation plots) - Predictions:
Predictions/<config>/<date>.txt(next-day forecasts)
- PyTorch
- PyTorch Lightning
- mamba-ssm[causal-conv1d]
- pandas, numpy, matplotlib, seaborn
- See
requirements.txtfor full list
@article{Sepehri2025CryptoMamba,
title={CryptoMamba: Leveraging State Space Models for Accurate Bitcoin Price Prediction},
author={Mohammad Shahab Sepehri and Asal Mehradfar and Mahdi Soltanolkotabi and Salman Avestimehr},
year={2025},
url={https://arxiv.org/abs/2501.01010}
}