Skip to content

TienNguyen93/capstone-ms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning Approaches to Cryptocurrency Price Prediction

Leverage existed CryptoMamba structure with sentiment score and compare with other algorithms

Repository Includes:

  • Implementation of CryptoMamba, LSTM, iTransformer, and Temporal Convolutional Network (TCN)
  • Code for data preprocessing, model training, evaluation metrics

Quick Start (modifications needed)

Configuration

  • Data Config: configs/data_configs/mode_1.yaml - defines data source, time intervals, and splits
  • Training Configs:
    • configs/training/cmamba_nv.yaml - without volume
    • configs/training/cmamba_v.yaml - with volume
  • Model Configs:
    • configs/models/CryptoMamba/v1.yaml - 5 features, no normalization
    • configs/models/CryptoMamba/v2.yaml - 6 features, no normalization

Data Format

Your raw data CSV should contain:

  • Timestamp (or Date column)
  • Open, High, Low, Close prices
  • Volume (optional, for volume variant)

Model Architecture

CryptoMamba uses:

  • Mamba SSM blocks with selective state updates
  • Residual connections and optional MLP branches
  • Configurable hidden dimensions and layer density
  • Window-based processing (default: 14 days)

Outputs

  • Logs: logs/ (TensorBoard)
  • Checkpoints: checkpoints/ (best models)
  • Results: Results/<name>/<config>/ (evaluation plots)
  • Predictions: Predictions/<config>/<date>.txt (next-day forecasts)

Requirements

  • PyTorch
  • PyTorch Lightning
  • mamba-ssm[causal-conv1d]
  • pandas, numpy, matplotlib, seaborn
  • See requirements.txt for full list

Citation

@article{Sepehri2025CryptoMamba,
    title={CryptoMamba: Leveraging State Space Models for Accurate Bitcoin Price Prediction}, 
    author={Mohammad Shahab Sepehri and Asal Mehradfar and Mahdi Soltanolkotabi and Salman Avestimehr},
    year={2025},
    url={https://arxiv.org/abs/2501.01010}
}

About

Comparative Analysis of Deep Learning Approaches to Cryptocurrency Price Prediction

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published